Skip to main content
Erschienen in: Meccanica 4/2015

01.04.2015

Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation

verfasst von: Ehsan Amiri Rad

Erschienen in: Meccanica | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of shear flow on droplet collapse during the coarsening process in a vapor–liquid system are investigated by a free energy lattice Boltzmann model. To simulate different viscosity ratios, a local relaxation time parameter is integrated with LBM algorithm. The results show that for zero and small shear rates, droplet coarsening happens in its regular pattern where small droplet is collapsed while greater one grows (sub-critical regime). But if the shear rate be greater than a critical value, collapse is abated, droplet coarsening is inverted and smaller droplet grows (super-critical regime). Therefore during coarsening process, collapse mechanism can be controlled by imposing suitable shear flow. Also it is shown that, higher droplet radius ratio, viscosity ratio and surface tension lead to higher critical shear rate of collapse while higher density ratio of liquid and vapor decreases that.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Amiri Rad E (2014) Coalescence of two at-rest equal-sized drops in static vapor of the same material: a lattice Boltzmann approach. J Mech Sci Technol 28(9):3597–3603CrossRef Amiri Rad E (2014) Coalescence of two at-rest equal-sized drops in static vapor of the same material: a lattice Boltzmann approach. J Mech Sci Technol 28(9):3597–3603CrossRef
3.
Zurück zum Zitat Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefADS Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefADS
4.
Zurück zum Zitat Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie 65(7):581–591 Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie 65(7):581–591
5.
Zurück zum Zitat Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interface Sci 5(1):1–35CrossRef Kahlweit M (1975) Ostwald ripening of precipitates. Adv Colloid Interface Sci 5(1):1–35CrossRef
6.
Zurück zum Zitat Vladimirova N, Malagoli A, Mauri R (1998) Diffusion-driven phase separation of deeply quenched mixtures. Phys Rev E 58(6):7691–7699CrossRefADS Vladimirova N, Malagoli A, Mauri R (1998) Diffusion-driven phase separation of deeply quenched mixtures. Phys Rev E 58(6):7691–7699CrossRefADS
7.
Zurück zum Zitat Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327CrossRefADS Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43:4320–4327CrossRefADS
8.
Zurück zum Zitat Shan XW, Chen HD (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819CrossRefADS Shan XW, Chen HD (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47:1815–1819CrossRefADS
9.
Zurück zum Zitat Shan X, Chen H (1994) Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948CrossRefADS Shan X, Chen H (1994) Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941–2948CrossRefADS
10.
Zurück zum Zitat Hou S, Zou Q, Chen S, Doolen G, Cogley AC (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329–347CrossRefADSMATH Hou S, Zou Q, Chen S, Doolen G, Cogley AC (1995) Simulation of cavity flow by the lattice Boltzmann method. J Comput Phys 118:329–347CrossRefADSMATH
11.
Zurück zum Zitat Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833CrossRefADS Swift MR, Osborn WR, Yeomans JM (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833CrossRefADS
12.
Zurück zum Zitat Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54:5041–5052CrossRefADS Swift MR, Orlandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys Rev E 54:5041–5052CrossRefADS
13.
Zurück zum Zitat He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152(2):642–663CrossRefADSMATHMathSciNet He X, Chen S, Zhang R (1999) A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys 152(2):642–663CrossRefADSMATHMathSciNet
14.
Zurück zum Zitat He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATH He X, Doolen G (2002) Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys 107:309–328CrossRefMATH
15.
Zurück zum Zitat Lee T, Lin C-L (2005) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206(1):16–47CrossRefADSMATHMathSciNet Lee T, Lin C-L (2005) A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys 206(1):16–47CrossRefADSMATHMathSciNet
16.
Zurück zum Zitat Wagner A (2006) Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Phys Rev E 74(5):056703CrossRefADS Wagner A (2006) Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Phys Rev E 74(5):056703CrossRefADS
17.
Zurück zum Zitat Kikkinides E, Yiotis A, Kainourgiakis M, Stubos A (2008) Thermodynamic consistency of liquid–gas lattice Boltzmann methods: interfacial property issues. Phys Rev E 78(3):036702CrossRefADS Kikkinides E, Yiotis A, Kainourgiakis M, Stubos A (2008) Thermodynamic consistency of liquid–gas lattice Boltzmann methods: interfacial property issues. Phys Rev E 78(3):036702CrossRefADS
18.
Zurück zum Zitat Briant AJ, Wagner AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Phys Rev E 69:031602CrossRefADS Briant AJ, Wagner AJ, Yeomans JM (2004) Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Phys Rev E 69:031602CrossRefADS
19.
Zurück zum Zitat Kusumaatmaja H, Dupuis A, Yeomans JM (2006) Lattice Boltzmann simulations of drop dynamics. Math Comput Simul 72(2–6):160–164CrossRefMATHMathSciNet Kusumaatmaja H, Dupuis A, Yeomans JM (2006) Lattice Boltzmann simulations of drop dynamics. Math Comput Simul 72(2–6):160–164CrossRefMATHMathSciNet
20.
Zurück zum Zitat Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629CrossRef Dupuis A, Yeomans JM (2005) Modeling droplets on superhydrophobic surfaces: equilibrium states and transitions. Langmuir 21:2624–2629CrossRef
21.
Zurück zum Zitat Mattila KK, Siebert DN, Hegele LA Jr, Philippi PC (2013) High-order lattice-Boltzmann equations and stencils for multiphase models. Int J Mod Phys C 24(12):1340006CrossRefADS Mattila KK, Siebert DN, Hegele LA Jr, Philippi PC (2013) High-order lattice-Boltzmann equations and stencils for multiphase models. Int J Mod Phys C 24(12):1340006CrossRefADS
22.
Zurück zum Zitat Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATH Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, OxfordMATH
23.
Zurück zum Zitat Holdych DJ, Rovas D, Georgiadis JG, Buckius RO (1998) An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models. Int J Mod Phys C 9:1393–1404CrossRefADS Holdych DJ, Rovas D, Georgiadis JG, Buckius RO (1998) An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models. Int J Mod Phys C 9:1393–1404CrossRefADS
24.
Zurück zum Zitat Evans R (1979) The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28:143–200CrossRefADS Evans R (1979) The nature of the liquid–vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv Phys 28:143–200CrossRefADS
25.
Zurück zum Zitat Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon Press, BerlinMATH Landau LD, Lifshitz EM (1958) Statistical physics. Pergamon Press, BerlinMATH
26.
Zurück zum Zitat Amiri Rad E (2014) Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann. Meccanica 49(6):1457–1467CrossRefMATHMathSciNet Amiri Rad E (2014) Investigation the effects of shear rate on stationary droplets coalescence by lattice Boltzmann. Meccanica 49(6):1457–1467CrossRefMATHMathSciNet
27.
Zurück zum Zitat Khatavkar VV, Anderson PD, Meijer HEM (2006) On scaling of diffuse–interface models. Chem Eng Sci 61:2364–2378CrossRef Khatavkar VV, Anderson PD, Meijer HEM (2006) On scaling of diffuse–interface models. Chem Eng Sci 61:2364–2378CrossRef
28.
Zurück zum Zitat Mahpeykar MR, Teymourtash AR, Amiri Rad E (2013) Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam. Meccanica 48(4):815–827CrossRefMATHMathSciNet Mahpeykar MR, Teymourtash AR, Amiri Rad E (2013) Theoretical investigation of effects of local cooling of a nozzle divergent section for controlling condensation shock in a supersonic two-phase flow of steam. Meccanica 48(4):815–827CrossRefMATHMathSciNet
Metadaten
Titel
Control of droplet collapse during coarsening process by imposing shear flow: a lattice Boltzmann simulation
verfasst von
Ehsan Amiri Rad
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-0079-7

Weitere Artikel der Ausgabe 4/2015

Meccanica 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.