Skip to main content

2019 | OriginalPaper | Buchkapitel

Control of Robot Manipulators with a Model for Backlash Nonlinearity in Gears

verfasst von : Soheil Ahangarian Abhari, Farzad Hashemzadeh, Mehdi Baradaran-nia, Hamed Kharrati

Erschienen in: Fundamental Research in Electrical Engineering

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a model for backlash nonlinearity in gears based on torque input-output equation. By combining the robot dynamic model with backlash, a stable sliding mode controller is developed and the asymptotic stability of the closed-loop system is shown using Lyapunov method and Barbalat’s Lemma. The proposed method is produced no chattering in the control torques and the tracking performance is desirable. Effectiveness of the controller is verified by comparative studies with numerical simulation. Finally, experimental results are presented to demonstrate the efficiency and capability of the proposed controller in dealing with backlash nonlinearities in gears of a five-bar manipulator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dhaouadi R, Ghorbel FH, Gandhi PS (2003) A new dynamic model of hysteresis in harmonic drives. IEEE Trans Industr Electron 50(6):1165–1171CrossRef Dhaouadi R, Ghorbel FH, Gandhi PS (2003) A new dynamic model of hysteresis in harmonic drives. IEEE Trans Industr Electron 50(6):1165–1171CrossRef
2.
Zurück zum Zitat Xiao Y, Du Z, You W, Li R (2010) Modeling and simulating the nonlinear characters of robot joints. In: 2010 IEEE international conference on robotics and biomimetics. IEEE, pp 914–919 Xiao Y, Du Z, You W, Li R (2010) Modeling and simulating the nonlinear characters of robot joints. In: 2010 IEEE international conference on robotics and biomimetics. IEEE, pp 914–919
3.
Zurück zum Zitat Lagerberg A, Egardt B (2007) Backlash estimation with application to automotive powertrains. IEEE Trans Control Syst Technol 15(3):483–493CrossRef Lagerberg A, Egardt B (2007) Backlash estimation with application to automotive powertrains. IEEE Trans Control Syst Technol 15(3):483–493CrossRef
4.
Zurück zum Zitat Villwock S, Pacas M (2009) Time-domain identification method for detecting mechanical backlash in electrical drives. IEEE Trans Industr Electron 56(2):568–573CrossRef Villwock S, Pacas M (2009) Time-domain identification method for detecting mechanical backlash in electrical drives. IEEE Trans Industr Electron 56(2):568–573CrossRef
5.
Zurück zum Zitat Zhang H, Ahmad S, Liu G (2015) Modeling of torsional compliance and hysteresis behaviors in harmonic drives. IEEE/ASME Trans Mechatron 20(1):178–185CrossRef Zhang H, Ahmad S, Liu G (2015) Modeling of torsional compliance and hysteresis behaviors in harmonic drives. IEEE/ASME Trans Mechatron 20(1):178–185CrossRef
6.
Zurück zum Zitat Ruderman M, Hoffmann F, Bertram T (2008) Preisach model of nonlinear transmission at low velocities in robot joints. In: 2008. AMC’08. 10th IEEE international workshop on advanced motion control. IEEE, pp 721–726 Ruderman M, Hoffmann F, Bertram T (2008) Preisach model of nonlinear transmission at low velocities in robot joints. In: 2008. AMC’08. 10th IEEE international workshop on advanced motion control. IEEE, pp 721–726
7.
Zurück zum Zitat Ruderman M, Hoffmann F, Bertram T (2009) Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans Industr Electron 56(10):3840–3847CrossRef Ruderman M, Hoffmann F, Bertram T (2009) Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans Industr Electron 56(10):3840–3847CrossRef
8.
Zurück zum Zitat Ruderman M, Bertram T (2012) Modeling and observation of hysteresis lost motion in elastic robot joints. IFAC Proc Volumes 45(22):13–18CrossRef Ruderman M, Bertram T (2012) Modeling and observation of hysteresis lost motion in elastic robot joints. IFAC Proc Volumes 45(22):13–18CrossRef
9.
Zurück zum Zitat Ruderman M, Bertram T, Iwasaki M (2014) Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics 24(5):407–415CrossRef Ruderman M, Bertram T, Iwasaki M (2014) Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics 24(5):407–415CrossRef
10.
Zurück zum Zitat Ruderman M, Iwasaki M (2014) On identification and sensorless control of nonlinear torsion in elastic robotic joints. In: IECON 2014-40th annual conference of the IEEE industrial electronics society. IEEE, pp 2828–2833 Ruderman M, Iwasaki M (2014) On identification and sensorless control of nonlinear torsion in elastic robotic joints. In: IECON 2014-40th annual conference of the IEEE industrial electronics society. IEEE, pp 2828–2833
11.
Zurück zum Zitat L. Acho, F. Ikhouane, and G. Pujo, “Robust control design for mechanisms with backlash,” Journal of Control Engineering and Technology, vol. 3, no. 4, 2013 L. Acho, F. Ikhouane, and G. Pujo, “Robust control design for mechanisms with backlash,” Journal of Control Engineering and Technology, vol. 3, no. 4, 2013
12.
Zurück zum Zitat Trendafilova I, Van Brussel H (2001) Non-linear dynamics tools for the motion analysis and condition monitoring of robot joints. Mech Syst Signal Process 15(6):1141–1164CrossRef Trendafilova I, Van Brussel H (2001) Non-linear dynamics tools for the motion analysis and condition monitoring of robot joints. Mech Syst Signal Process 15(6):1141–1164CrossRef
13.
Zurück zum Zitat Tjahjowidodo T, Al-Bender F, Van Brussel H (2007) Experimental dynamic identification of backlash using skeleton methods. Mech Syst Signal Process 21(2):959–972CrossRef Tjahjowidodo T, Al-Bender F, Van Brussel H (2007) Experimental dynamic identification of backlash using skeleton methods. Mech Syst Signal Process 21(2):959–972CrossRef
14.
Zurück zum Zitat Dion J-L, Le Moyne S, Chevallier G, Sebbah H (2009) Gear impacts and idle gear noise: Experimental study and non-linear dynamic model. Mech Syst Signal Process 23(8):2608–2628CrossRef Dion J-L, Le Moyne S, Chevallier G, Sebbah H (2009) Gear impacts and idle gear noise: Experimental study and non-linear dynamic model. Mech Syst Signal Process 23(8):2608–2628CrossRef
15.
Zurück zum Zitat Su C-Y, Stepanenko Y, Svoboda J, Leung T-P (2000) Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 45(12):2427–2432MathSciNetCrossRef Su C-Y, Stepanenko Y, Svoboda J, Leung T-P (2000) Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Autom Control 45(12):2427–2432MathSciNetCrossRef
16.
Zurück zum Zitat Liu S, Su C-Y, Li Z (2014) Robust adaptive inverse control of a class of nonlinear systems with prandtl-ishlinskii hysteresis model. IEEE Trans Autom Control 59(8):2170–2175MathSciNetCrossRef Liu S, Su C-Y, Li Z (2014) Robust adaptive inverse control of a class of nonlinear systems with prandtl-ishlinskii hysteresis model. IEEE Trans Autom Control 59(8):2170–2175MathSciNetCrossRef
17.
Zurück zum Zitat Bi S, Deng M, Wang L, Ma S (2013) Operator-based robust control for nonlinear uncertain systems with backlash-like hysteresis. In: 2013 international conference on advanced mechatronic systems (ICAMechS). IEEE, pp 710–715 Bi S, Deng M, Wang L, Ma S (2013) Operator-based robust control for nonlinear uncertain systems with backlash-like hysteresis. In: 2013 international conference on advanced mechatronic systems (ICAMechS). IEEE, pp 710–715
18.
Zurück zum Zitat Soltanpour MR, Khalilpour J, Soltani M (2012) Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models. Int J Innovative Comput Inf Control 8(8):5487–5498 Soltanpour MR, Khalilpour J, Soltani M (2012) Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models. Int J Innovative Comput Inf Control 8(8):5487–5498
19.
Zurück zum Zitat Lin F, Brandt RD (1998) An optimal control approach to robust control of robot manipulators. IEEE Trans Robot Autom 14(1):69–77CrossRef Lin F, Brandt RD (1998) An optimal control approach to robust control of robot manipulators. IEEE Trans Robot Autom 14(1):69–77CrossRef
20.
Zurück zum Zitat Dong R, Tan Y, Janschek K (2016) Nonsmooth predictive control for wiener systems with backlash-like hysteresis. IEEE/ASME Trans Mechatron 21(1):17–28MATH Dong R, Tan Y, Janschek K (2016) Nonsmooth predictive control for wiener systems with backlash-like hysteresis. IEEE/ASME Trans Mechatron 21(1):17–28MATH
21.
Zurück zum Zitat Tao G, Ma X, Ling Y (2001) Optimal and nonlinear decoupling control of systems with sandwiched backlash. Automatica 37(2):165–176MathSciNetCrossRef Tao G, Ma X, Ling Y (2001) Optimal and nonlinear decoupling control of systems with sandwiched backlash. Automatica 37(2):165–176MathSciNetCrossRef
22.
Zurück zum Zitat Guo J, Yao B, Chen Q, Jiang J (2009) Adaptive robust control for nonlinear system with input backlash or backlash-like hysteresis. In: 2009. ICCA 2009. IEEE international conference on control and automation. IEEE, pp 1962–1967 Guo J, Yao B, Chen Q, Jiang J (2009) Adaptive robust control for nonlinear system with input backlash or backlash-like hysteresis. In: 2009. ICCA 2009. IEEE international conference on control and automation. IEEE, pp 1962–1967
23.
Zurück zum Zitat Hu C, Yao B, Wang Q (2011) Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments. IEEE Trans Industr Electron 58(6):2454–2464CrossRef Hu C, Yao B, Wang Q (2011) Adaptive robust precision motion control of systems with unknown input dead-zones: a case study with comparative experiments. IEEE Trans Industr Electron 58(6):2454–2464CrossRef
24.
Zurück zum Zitat Li Y, Wang Q (2017) Adaptive robust tracking control of a proportional pressure-reducing valve with dead zone and hysteresis. Transactions of the Institute of Measurement and ControlCrossRef Li Y, Wang Q (2017) Adaptive robust tracking control of a proportional pressure-reducing valve with dead zone and hysteresis. Transactions of the Institute of Measurement and ControlCrossRef
25.
Zurück zum Zitat Nordin M, Bodin P, Gutman P-O (2001) New models and identification methods for backlash and gear play. Adaptive control of nonsmooth dynamic systems, pp 1–30 Nordin M, Bodin P, Gutman P-O (2001) New models and identification methods for backlash and gear play. Adaptive control of nonsmooth dynamic systems, pp 1–30
26.
Zurück zum Zitat Zheng M, Liao W, Yin C, Wang A (2014) Nonlinear tracking control design of a robot arm using robust right coprime factorization and sliding mode approaches. In: 2014 international conference on advanced mechatronic systems (ICAMechS). IEEE, pp 11–16 Zheng M, Liao W, Yin C, Wang A (2014) Nonlinear tracking control design of a robot arm using robust right coprime factorization and sliding mode approaches. In: 2014 international conference on advanced mechatronic systems (ICAMechS). IEEE, pp 11–16
27.
Zurück zum Zitat Khalate A, Dey R, Ray G et al (2014) Robust control of robot manipulator based on estimation of upper bounds on parametric uncertainty. In: 2014 international conference on electrical and computer engineering (ICECE). IEEE, pp 745–748 Khalate A, Dey R, Ray G et al (2014) Robust control of robot manipulator based on estimation of upper bounds on parametric uncertainty. In: 2014 international conference on electrical and computer engineering (ICECE). IEEE, pp 745–748
28.
Zurück zum Zitat Bechlioulis CP, Liarokapis MV, Kyriakopoulos KJ (2014) Robust model free control of robotic manipulators with prescribed transient and steady state performance. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014). IEEE, pp 41–46 Bechlioulis CP, Liarokapis MV, Kyriakopoulos KJ (2014) Robust model free control of robotic manipulators with prescribed transient and steady state performance. In: 2014 IEEE/RSJ international conference on intelligent robots and systems (IROS 2014). IEEE, pp 41–46
29.
Zurück zum Zitat Chang Y-C, Yen H-M (2011) Design of a robust position feedback tracking controller for flexible-joint robots. IET Control Theory Appl 5(2):351–363MathSciNetCrossRef Chang Y-C, Yen H-M (2011) Design of a robust position feedback tracking controller for flexible-joint robots. IET Control Theory Appl 5(2):351–363MathSciNetCrossRef
30.
Zurück zum Zitat He W, Ouyang Y, Hong J (2017) Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans Industr Inf 13(1):48–59CrossRef He W, Ouyang Y, Hong J (2017) Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans Industr Inf 13(1):48–59CrossRef
31.
Zurück zum Zitat He X, He W, Sun C (2017) Robust adaptive vibration control for an uncertain flexible timoshenko robotic manipulator with input and output constraints. Int J Syst Sci 48(13):2860–2870MathSciNetCrossRef He X, He W, Sun C (2017) Robust adaptive vibration control for an uncertain flexible timoshenko robotic manipulator with input and output constraints. Int J Syst Sci 48(13):2860–2870MathSciNetCrossRef
32.
Zurück zum Zitat Wang X-S, Su C-Y, Hong H (2004) Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3):407–413MathSciNetCrossRef Wang X-S, Su C-Y, Hong H (2004) Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3):407–413MathSciNetCrossRef
33.
Zurück zum Zitat Su C-Y, Oya M, Chen X (2001) Robust adaptive control of nonlinear systems with dynamic backlash-like hysteresis. In: Adaptive control of nonsmooth dynamic systems. Springer, pp 273–288CrossRef Su C-Y, Oya M, Chen X (2001) Robust adaptive control of nonlinear systems with dynamic backlash-like hysteresis. In: Adaptive control of nonsmooth dynamic systems. Springer, pp 273–288CrossRef
34.
Zurück zum Zitat Lewis FL, Dawson DM, Abdallah CT (2003) Robot manipulator control: theory and practice. CRC Press, 2003CrossRef Lewis FL, Dawson DM, Abdallah CT (2003) Robot manipulator control: theory and practice. CRC Press, 2003CrossRef
35.
Zurück zum Zitat Badamchizadeh MA, Hassanzadeh I, Abedinpour Fallah M (2010) Extended and unscented kalman filtering applied to a flexible-joint robot with jerk estimation. Discrete Dynamics Nat Soc 2010CrossRef Badamchizadeh MA, Hassanzadeh I, Abedinpour Fallah M (2010) Extended and unscented kalman filtering applied to a flexible-joint robot with jerk estimation. Discrete Dynamics Nat Soc 2010CrossRef
36.
Zurück zum Zitat Ruderman M, Iwasaki M (2016) Sensorless torsion control of elastic-joint robots with hysteresis and friction. IEEE Trans Industr Electron 63(3):1889–1899CrossRef Ruderman M, Iwasaki M (2016) Sensorless torsion control of elastic-joint robots with hysteresis and friction. IEEE Trans Industr Electron 63(3):1889–1899CrossRef
Metadaten
Titel
Control of Robot Manipulators with a Model for Backlash Nonlinearity in Gears
verfasst von
Soheil Ahangarian Abhari
Farzad Hashemzadeh
Mehdi Baradaran-nia
Hamed Kharrati
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8672-4_18

Neuer Inhalt