We consider control affine systems, as well as cost-extended control systems, on the (four-dimensional) Engel group. Specifically, we classify the full-rank left-invariant control affine systems (under both detached feedback equivalence and strongly detached feedback equivalence). The cost-extended control systems with quadratic cost are then classified (under cost equivalence), as are their associated Hamilton-Poisson systems (up to affine isomorphism). In all cases, we exhibit a complete list of equivalence class representatives.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Adams RM, Biggs R, Remsing CC. Control systems on the orthogonal group
\(\mathsf {SO}(4)\). Commun Math 2013;21:107–28.
MathSciNetMATH
2.
Adams RM, Biggs R, Remsing CC. Equivalence of control systems on the Euclidean group
\(\mathsf {{{SE}}}(2)\). Control Cybernet 2012;41:513–24.
MathSciNetMATH
3.
Adams MA, Tie J. On sub-Riemannian geodesics on the Engel groups: Hamilton’s equations. Math Nachr 2013;286:1381–406.
MathSciNetMATH
4.
Agrachev AA, Barilari D. Sub-Riemannian structures on 3D Lie groups. J Dyn Control Syst 2012;18:21–44.
MathSciNetCrossRefMATH
5.
Agrachev AA, Sachkov YuL. Control Theory from the Geometric Viewpoint. Berlin: Springer; 2004.
CrossRefMATH
6.
Almeida DM. Sub-Riemannian homogeneous spaces of Engel type. J Dyn Control Syst 2014;20:149–66.
MathSciNetCrossRefMATH
7.
Ardentov A, Huang T, Sachkov YuL, Yang X. Extremals in the Engel group with a sub-Lorentzian metric. Preprint.
8.
Ardentov AA, Sachkov YuL. Conjugate points in nilpotent sub-Riemannian problem on the Engel group. J Math Sci 2013;195:369–90.
MathSciNetCrossRefMATH
9.
Ardentov AA, Sachkov YuL. Cut locus in the sub-Riemannian problem on Engel group. Dokl Math 2018;97:82–5.
CrossRefMATH
10.
Ardentov AA, Sachkov YuL. Cut time in sub-Riemannian problem on Engel group. ESAIM: COCV 2015;21:958–88.
MathSciNetCrossRefMATH
11.
Ardentov AA, Sachkov YuL. Extremal paths in the nilpotent sub-Riemannian problem on the Engel group (subcritical case of pendulum oscillations). J Math Sci 2014; 199:481–7.
MathSciNetCrossRefMATH
12.
Ardentov AA, Sachkov YuL. Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group. Mat Sb 2011;202:31–54.
MathSciNetCrossRefMATH
13.
Ardentov AA, Sachkov YuL. Maxwell strata and cut locus in sub-Riemannian problem on Engel group. Regul Chaot Dyn 2017;22:909–36.
MathSciNetCrossRef
14.
Barilari D, Boscain U, Sigalotti M (eds.) 2016. Geometry, Analysis and Dynamics on Sub-Riemannian Manifolds. Eur. Math. Soc.
15.
Barrett DI, Biggs R, Remsing CC. Affine distributions on a four-dimensional extension of the semi-Euclidean group. Note Mat 2015;35:81–97.
MathSciNetMATH
16.
Barrett DI, Biggs R, Remsing CC. Affine subspaces of the Lie algebra
\(\mathfrak {se}(1,1)\). Eur J Pure Appl Math 2014;7:140–55.
MathSciNet
17.
Bartlett CE, Biggs R, Remsing CC. Control systems on nilpotent Lie groups of dimension
\(4\): equivalence and classification. Differential Geom Appl 2017;38:282–97.
MathSciNetCrossRefMATH
18.
Bartlett CE, Biggs R, Remsing CC. Control systems on the Heisenberg group: equivalence and classification. Publ Math Debrecens 2016;88:217–34.
MathSciNetCrossRefMATH
19.
Bellaïche A, Risler JJ, (eds). 1996. Sub-Riemannian Geometry. Basel: Birkhäuser.
MATH
20.
Beschastnyi I, Medvedev A. Left-invariant sub-Riemannian Engel structures: abnormal geodesics and integrability. Preprint.
21.
Biggs R, Nagy PT. A classification of sub-Riemannian structures on the Heisenberg groups. Acta Polytech Hungar 2013;10:41–52.
22.
Biggs R, Remsing CC. Control affine systems on semisimple three-dimensional Lie groups. An Şt Univ “A.I. Cuza” Iaşi Ser Mat. 2013;59:399–414.
MathSciNetMATH
23.
Biggs R, Remsing CC. Control affine systems on solvable three-dimensional Lie groups, I. Arch. Math. (Brno) 2013;43:187–97.
MathSciNetCrossRefMATH
24.
Biggs R, Remsing CC. Control affine systems on solvable three-dimensional Lie groups, II. Note Mat 2013;33:19–31.
MathSciNetMATH
25.
Biggs R, Remsing CC. Control systems on three-dimensional Lie groups: equivalence and controllability. J Dyn Control Syst 2014;20:307–39.
MathSciNetCrossRefMATH
26.
Biggs R, Remsing CC. Cost-extended control systems on Lie groups. Mediterr J Math 2014;11:193–215.
MathSciNetCrossRefMATH
27.
Biggs R, Remsing CC. Equivalence of control systems on the pseudo-orthogonal group
\(\mathsf {{{SO}}}(2,1)\). An Ştiinţ Univ Ovidius Constanţa 2016;24:45–65.
MATH
28.
Biggs R, Remsing CC. On the classification of real four-dimensional Lie groups. J Lie Theory 2016;26:1001–35.
MathSciNetMATH
29.
Biggs R, Remsing CC. On the equivalence of control systems on Lie groups. Commun Math 2015;23:119–29.
MathSciNetMATH
30.
Biggs R, Remsing CC. Some remarks on the oscillator group. Differential Geom Appl 2014;35:199–209.
MathSciNetCrossRefMATH
31.
Biggs R, Remsing CC. Subspaces of real four-dimensional Lie algebras: a classification of subalgebras, ideals, and full-rank subspaces. Extracta Math 2015;30:41–93.
MathSciNetMATH
32.
Cai Q, Huang T, Sachkov YuL, Yang X. Geodesics in the Engel group with sub-Lorentzian metric. J Dyn Control Syst 2016;22:465–483.
MathSciNetCrossRefMATH
33.
Calin O, Chang DC. Sub-Riemannian Geometry: General Theory and Examples. Cambridge: Cambridge University Press; 2009.
CrossRefMATH
34.
Jurdjevic V. Geometric Control Theory. Cambridge: Cambridge University Press; 1997.
MATH
35.
Knapp AW. Lie groups, Beyond an Introduction, 2nd ed. Boston: Birkhäuser; 2002.
MATH
36.
Laurent-Gengoux C, Pichereau A, Vanhaecke P. Poisson Structures. Heidelberg: Springer; 2013.
CrossRefMATH
37.
Moiseev I, Sachkov YuL. Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 2010;16:380–99.
MathSciNetCrossRefMATH
38.
Montgomery R. 2002. A Tour of Subriemannian Geometries, Their Geodesics and Applications. Amer. Math. Soc, Providence, RI.
39.
Sachkov YuL. Conjugate and cut time in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 2010;16:1018–39.
MathSciNetCrossRefMATH
40.
Sachkov YuL. Control theory on Lie groups. J Math Sci 2009;156:381–439.
MathSciNetCrossRefMATH
41.
Sachkov YuL. Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV 2011;17:293–321.
MathSciNetCrossRefMATH
42.
Sachkov YuL. Symmetries of flat rank two distributions and sub-Riemannian structures. Trans Amer Math Soc 2004;356:457–94.
MathSciNetCrossRefMATH
43.
Stefani G, Boscain U, Gauthier J-P, Sarychev A, Sigalotti M, (eds). 2014. Geometric Control Theory and Sub-Riemannian Geometry. Heidelberg: Springer.
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Lesen Sie in diesem ausgewählten Buchkapitel alles über den 3D-Druck im Hinblick auf Begriffe, Funktionsweise, Anwendungsbereiche sowie Nutzen und Grenzen additiver Fertigungsverfahren. Eigenschaften eines schlanken Produktionssystems sowie der Aspekt der „Schlankheit“ werden ebenso beleuchtet wie die Prinzipien und Methoden der Lean Production. Jetzt gratis downloaden!
Marktübersichten
Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.