Skip to main content
Erschienen in: Journal of Materials Science 12/2017

08.03.2017 | Original Paper

Controlled synthesis and mechanism of large-area WS2 flakes by low-pressure chemical vapor deposition

verfasst von: Song Hu, Xiangfu Wang, Lan Meng, Xiaohong Yan

Erschienen in: Journal of Materials Science | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

WS2 flakes have been grown successfully on SiO2(300 nm)/Si substrate via traditional low-pressure chemical vapor deposition method. We studied the controllable growth of WS2 flakes on three of the growth parameters: the time of S-precursor introduction, the temperature of WO3 precursor and the growth temperature. The as-prepared products were characterized by X-ray photoemission spectroscopy, Raman spectra and atomic force microscopy. It is found that the morphologies of WS2 flakes and the products are highly dependent on the concentration of S-precursor, W-precursor and the ratio of W atoms to S atoms, while large-area WS2 flakes up to 160 μm can be obtained. If the ratio of W/S is ≤1:2, we obtain triangular and hexagonal WS2 flakes. On the contrary, if the ratio of W/S is >1:2, besides WS2 flakes, W nanowires will be formed owing to the superfluous W atoms. This study can provide an important and practical guide to preparing large-area and high-quality two-dimensional transition metal dichalcogenides materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang X, Feng H, Wu Y et al (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef Wang X, Feng H, Wu Y et al (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef
2.
Zurück zum Zitat Cong C, Shang J, Wu X et al (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater 2:131–136CrossRef Cong C, Shang J, Wu X et al (2014) Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv Opt Mater 2:131–136CrossRef
3.
Zurück zum Zitat Meng L, Zhang Y, Hu S et al (2016) Two dimensional WS2 lateral heterojunctions by strain modulation. Appl Phys Lett 108:263104CrossRef Meng L, Zhang Y, Hu S et al (2016) Two dimensional WS2 lateral heterojunctions by strain modulation. Appl Phys Lett 108:263104CrossRef
4.
Zurück zum Zitat Ji Q, Zhang Y, Zhang Y et al (2015) Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem Soc Rev 44:2587–2602CrossRef Ji Q, Zhang Y, Zhang Y et al (2015) Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem Soc Rev 44:2587–2602CrossRef
5.
Zurück zum Zitat Lv R, Robinson JA, Schaak RE et al (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64CrossRef Lv R, Robinson JA, Schaak RE et al (2014) Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Acc Chem Res 48:56–64CrossRef
6.
Zurück zum Zitat Schmidt H, Giustiniano F, Eda G (2015) Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem Soc Rev 44:7715–7736CrossRef Schmidt H, Giustiniano F, Eda G (2015) Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. Chem Soc Rev 44:7715–7736CrossRef
7.
Zurück zum Zitat Suzuki R, Sakano M, Zhang YJ et al (2014) Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat Nanotechnol 9:611–617CrossRef Suzuki R, Sakano M, Zhang YJ et al (2014) Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat Nanotechnol 9:611–617CrossRef
8.
Zurück zum Zitat He X, Liu F, Hu P et al (2015) Chemical vapor deposition of high-quality and atomically layered ReS2. Small 11:5423–5429CrossRef He X, Liu F, Hu P et al (2015) Chemical vapor deposition of high-quality and atomically layered ReS2. Small 11:5423–5429CrossRef
9.
Zurück zum Zitat Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRef Wang QH, Kalantar-Zadeh K, Kis A et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRef
11.
Zurück zum Zitat Kobayashi Y, Sasaki S, Mori S et al (2015) Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9:4056–4063CrossRef Kobayashi Y, Sasaki S, Mori S et al (2015) Growth and optical properties of high-quality monolayer WS2 on graphite. ACS Nano 9:4056–4063CrossRef
12.
Zurück zum Zitat Late DJ, Huang YK, Liu B et al (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891CrossRef Late DJ, Huang YK, Liu B et al (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879–4891CrossRef
13.
Zurück zum Zitat Huo N, Wei Z, Meng X et al (2015) Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J Mater Chem C 3:5467–5473CrossRef Huo N, Wei Z, Meng X et al (2015) Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J Mater Chem C 3:5467–5473CrossRef
14.
Zurück zum Zitat Duerloo KAN, Li Y, Reed EJ (2014) Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat Commun. doi:10.1038/ncomms5214 Duerloo KAN, Li Y, Reed EJ (2014) Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat Commun. doi:10.​1038/​ncomms5214
15.
Zurück zum Zitat Nayak AP, Yuan Z, Cao B et al (2015) Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 9:9117–9123CrossRef Nayak AP, Yuan Z, Cao B et al (2015) Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide. ACS Nano 9:9117–9123CrossRef
16.
Zurück zum Zitat Kang KN, Godin K, Yang EH (2015) The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci Rep. doi:10.1038/srep13205 Kang KN, Godin K, Yang EH (2015) The growth scale and kinetics of WS2 monolayers under varying H2 concentration. Sci Rep. doi:10.​1038/​srep13205
17.
18.
Zurück zum Zitat Yuan H, Liu Z, Xu G et al (2016) Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett 16:4738–4745CrossRef Yuan H, Liu Z, Xu G et al (2016) Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett 16:4738–4745CrossRef
19.
Zurück zum Zitat Fan J, Li T, Djerdj I (2015) Two-dimensional atomic crystals: paving new ways for nanoelectronics. J Electron Mater 44:4080–4097CrossRef Fan J, Li T, Djerdj I (2015) Two-dimensional atomic crystals: paving new ways for nanoelectronics. J Electron Mater 44:4080–4097CrossRef
20.
Zurück zum Zitat Zeng H, Liu GB, Dai J et al (2013) Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep. doi:10.1038/srep01608 Zeng H, Liu GB, Dai J et al (2013) Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep. doi:10.​1038/​srep01608
22.
Zurück zum Zitat Janisch C, Mehta N, Ma D et al (2014) Ultrashort optical pulse characterization using WS2 monolayers. Opt Lett 39:383–385CrossRef Janisch C, Mehta N, Ma D et al (2014) Ultrashort optical pulse characterization using WS2 monolayers. Opt Lett 39:383–385CrossRef
23.
Zurück zum Zitat Janisch C, Wang Y, Ma D et al (2014) Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep. doi:10.1038/srep05530 Janisch C, Wang Y, Ma D et al (2014) Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep. doi:10.​1038/​srep05530
24.
Zurück zum Zitat Rong Y, Fan Y, Koh AL et al (2014) Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6:12096–12103CrossRef Rong Y, Fan Y, Koh AL et al (2014) Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6:12096–12103CrossRef
25.
Zurück zum Zitat Gutiérrez HR, Perea-López N, Elías AL et al (2012) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13:3447–3454CrossRef Gutiérrez HR, Perea-López N, Elías AL et al (2012) Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett 13:3447–3454CrossRef
26.
Zurück zum Zitat Xiao SL, Yu WZ, Gao SP (2016) Edge preference and band gap characters of MoS2 and WS2 nanoribbons. ACS Nano 653:107–112 Xiao SL, Yu WZ, Gao SP (2016) Edge preference and band gap characters of MoS2 and WS2 nanoribbons. ACS Nano 653:107–112
27.
Zurück zum Zitat Zhang Y, Zhang Y, Ji Q et al (2013) Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7:8963–8971CrossRef Zhang Y, Zhang Y, Ji Q et al (2013) Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7:8963–8971CrossRef
28.
Zurück zum Zitat Gong Y, Lin J, Wang X et al (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135–1142CrossRef Gong Y, Lin J, Wang X et al (2014) Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 13:1135–1142CrossRef
29.
Zurück zum Zitat Sarma PV, Patil PD, Barman PK et al (2016) Controllable growth of few-layer spiral WS2. RSC Adv 6:376–382CrossRef Sarma PV, Patil PD, Barman PK et al (2016) Controllable growth of few-layer spiral WS2. RSC Adv 6:376–382CrossRef
30.
Zurück zum Zitat Shi J, Ma D, Han GF et al (2014) Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10):10196–10204CrossRef Shi J, Ma D, Han GF et al (2014) Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10):10196–10204CrossRef
31.
Zurück zum Zitat Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 9(5):5246–5254CrossRef Wang S, Wang X, Warner JH (2015) All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 9(5):5246–5254CrossRef
32.
Zurück zum Zitat Song JG, Park J, Lee W et al (2013) Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12):11333–11340CrossRef Song JG, Park J, Lee W et al (2013) Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7(12):11333–11340CrossRef
33.
Zurück zum Zitat Berkdemir A, Gutiérrez HR, Botello-Méndez AR et al (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep. doi:10.1038/srep01755 Berkdemir A, Gutiérrez HR, Botello-Méndez AR et al (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep. doi:10.​1038/​srep01755
34.
Zurück zum Zitat Terrones H, Del Corro E, Feng S et al (2014) New first order Raman-active modes in few layered transition metal dichalcogenides. Sci Rep. doi:10.1038/srep04215 Terrones H, Del Corro E, Feng S et al (2014) New first order Raman-active modes in few layered transition metal dichalcogenides. Sci Rep. doi:10.​1038/​srep04215
36.
Zurück zum Zitat Su L, Yu Y, Cao L et al (2015) Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res 8(8):2686–2697CrossRef Su L, Yu Y, Cao L et al (2015) Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res 8(8):2686–2697CrossRef
37.
Zurück zum Zitat Heo H, Sung JH, Jin G et al (2015) Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv Mater 27:3803–3810CrossRef Heo H, Sung JH, Jin G et al (2015) Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv Mater 27:3803–3810CrossRef
38.
Zurück zum Zitat Bosi M (2015) Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv 5:75500–75518CrossRef Bosi M (2015) Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv 5:75500–75518CrossRef
39.
Zurück zum Zitat Reale F, Sharda K, Mattevi C (2016) From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Appl Mater T3:11–22 Reale F, Sharda K, Mattevi C (2016) From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Appl Mater T3:11–22
40.
Zurück zum Zitat Fu Q, Wang W, Yang L et al (2015) Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv 5:15795–15799CrossRef Fu Q, Wang W, Yang L et al (2015) Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv 5:15795–15799CrossRef
41.
Zurück zum Zitat Dasgupta NP, Meng X, Elam JW et al (2015) Atomic layer deposition of metal sulfide materials. Acc Chem Res 48:341–348CrossRef Dasgupta NP, Meng X, Elam JW et al (2015) Atomic layer deposition of metal sulfide materials. Acc Chem Res 48:341–348CrossRef
42.
Zurück zum Zitat Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44:2584–2586CrossRef Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44:2584–2586CrossRef
Metadaten
Titel
Controlled synthesis and mechanism of large-area WS2 flakes by low-pressure chemical vapor deposition
verfasst von
Song Hu
Xiangfu Wang
Lan Meng
Xiaohong Yan
Publikationsdatum
08.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0958-0

Weitere Artikel der Ausgabe 12/2017

Journal of Materials Science 12/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.