Skip to main content
Erschienen in: Calcolo 2/2020

01.06.2020

Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations

verfasst von: El Houssaine Quenjel, Mazen Saad, Mustapha Ghilani, Marianne Bessemoulin-Chatard

Erschienen in: Calcolo | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we carry out the convergence analysis of a positive DDFV method for approximating solutions of degenerate parabolic equations. The basic idea rests upon different approximations of the fluxes on the same interface of the control volume. Precisely, the approximated flux is split into two terms corresponding to the primal and dual normal components. Then the first term is discretized using a centered scheme whereas the second one is approximated in a non evident way by an upstream scheme. The novelty of our approach is twofold: on the one hand we prove that the resulting scheme preserves the positivity and on the other hand we establish energy estimates. Some numerical tests are presented and they show that the scheme in question turns out to be robust and efficient. The accuracy is almost of second order on general meshes when the solution is smooth.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Afif, M., Amaziane, B.: Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media. Comput. Methods Appl. Mech. Eng. 191(46), 5265–5286 (2002)MathSciNetMATHCrossRef Afif, M., Amaziane, B.: Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flow in porous media. Comput. Methods Appl. Mech. Eng. 191(46), 5265–5286 (2002)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Andreianov, B., Bendahmane, M., Hubert, F.: On 3D DDFV discretization of gradient and divergence operators: discrete functional analysis tools and applications to degenerate parabolic problems. Comput. Methods Appl. Math. 13(4), 369–410 (2013)MathSciNetMATHCrossRef Andreianov, B., Bendahmane, M., Hubert, F.: On 3D DDFV discretization of gradient and divergence operators: discrete functional analysis tools and applications to degenerate parabolic problems. Comput. Methods Appl. Math. 13(4), 369–410 (2013)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Andreianov, B., Bendahmane, M., Hubert, F., Krell, S.: On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality. IMA J. Numer. Anal. 32(4), 1574–1603 (2012)MathSciNetMATHCrossRef Andreianov, B., Bendahmane, M., Hubert, F., Krell, S.: On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality. IMA J. Numer. Anal. 32(4), 1574–1603 (2012)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetMATHCrossRef Andreianov, B., Bendahmane, M., Saad, M.: Finite volume methods for degenerate chemotaxis model. J. Comput. Appl. Math. 235(14), 4015–4031 (2011)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray- Lions- type elliptic problems on general 2D meshes. Numer. Methods Part. Differ. Equations 23(1), 145–195 (2007)MathSciNetMATHCrossRef Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray- Lions- type elliptic problems on general 2D meshes. Numer. Methods Part. Differ. Equations 23(1), 145–195 (2007)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Andreianov, B.A., Gutnic, M., Wittbold, P.: Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: A “continuous” approach. SIAM J. Numer. Anal. 42(1), 228–251 (2004)MathSciNetMATHCrossRef Andreianov, B.A., Gutnic, M., Wittbold, P.: Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: A “continuous” approach. SIAM J. Numer. Anal. 42(1), 228–251 (2004)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Angelini, O., Brenner, K., Hilhorst, D.: A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation. Numer. Math. 123(2), 219–257 (2013)MathSciNetMATHCrossRef Angelini, O., Brenner, K., Hilhorst, D.: A finite volume method on general meshes for a degenerate parabolic convection-reaction-diffusion equation. Numer. Math. 123(2), 219–257 (2013)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Barrett, J.W., Knabner, P.: Finite element approximation of the transport of reactive solutes in porous media. Part II: Error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34(2), 455–479 (1997)MathSciNetMATHCrossRef Barrett, J.W., Knabner, P.: Finite element approximation of the transport of reactive solutes in porous media. Part II: Error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34(2), 455–479 (1997)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Bendahmane, M., Khalil, Z., Saad, M.: Convergence of a finite volume scheme for gas–water flow in a multi-dimensional porous medium. Math. Models Methods Appl. Sci. 24(01), 145–185 (2014)MathSciNetMATHCrossRef Bendahmane, M., Khalil, Z., Saad, M.: Convergence of a finite volume scheme for gas–water flow in a multi-dimensional porous medium. Math. Models Methods Appl. Sci. 24(01), 145–185 (2014)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2014)MathSciNetMATHCrossRef Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes. IMA J. Numer. Anal. 35(3), 1125–1149 (2014)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)MathSciNetMATHCrossRef Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2010)CrossRef Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2010)CrossRef
14.
Zurück zum Zitat Camier, J.-S., Hermeline, F.: A monotone nonlinear finite volume method for approximating diffusion operators on general meshes. Int. J. Numer. Methods Eng. 107(6), 496–519 (2016)MathSciNetMATHCrossRef Camier, J.-S., Hermeline, F.: A monotone nonlinear finite volume method for approximating diffusion operators on general meshes. Int. J. Numer. Methods Eng. 107(6), 496–519 (2016)MathSciNetMATHCrossRef
15.
Zurück zum Zitat Cancès, C., Cathala, M., Le Potier, C.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125(3), 387–417 (2013)MathSciNetMATHCrossRef Cancès, C., Cathala, M., Le Potier, C.: Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations. Numer. Math. 125(3), 387–417 (2013)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85(298), 549–580 (2016)MathSciNetMATHCrossRef Cancès, C., Guichard, C.: Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations. Math. Comput. 85(298), 549–580 (2016)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)MathSciNetMATHCrossRef Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017)MathSciNetMATHCrossRef Cancès, C., Ibrahim, M., Saad, M.: Positive nonlinear CVFE scheme for degenerate anisotropic Keller–Segel system. SMAI J. Comput. Math. 3, 1–28 (2017)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)MathSciNetMATHCrossRef Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. 17(6), 1525–1584 (2017)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Part. Differ. Equations 31(3), 723–760 (2015)MathSciNetMATHCrossRef Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Part. Differ. Equations 31(3), 723–760 (2015)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, vol. 17. Elsevier, Amsterdam (1986)MATH Chavent, G., Jaffré, J.: Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, vol. 17. Elsevier, Amsterdam (1986)MATH
22.
Zurück zum Zitat Coudière, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33(4), 1739–1764 (2011)MathSciNetMATHCrossRef Coudière, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33(4), 1739–1764 (2011)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Coudière, Y., Manzini, G.: The discrete duality finite volume method for convection-diffusion problems. SIAM J. Numer. Anal. 47(6), 4163–4192 (2010)MathSciNetMATHCrossRef Coudière, Y., Manzini, G.: The discrete duality finite volume method for convection-diffusion problems. SIAM J. Numer. Anal. 47(6), 4163–4192 (2010)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Delcourte, S., Domelevo, K., Omnès, P.: Discrete duality finite volume method for second order elliptic problems, pp. 447–458. Hermes Science Publishing, Paris (2005)MATH Delcourte, S., Domelevo, K., Omnès, P.: Discrete duality finite volume method for second order elliptic problems, pp. 447–458. Hermes Science Publishing, Paris (2005)MATH
25.
Zurück zum Zitat Domelevo, K., Omnès, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM Math. Model. Numer. Anal. 39(6), 1203–1249 (2005)MathSciNetMATHCrossRef Domelevo, K., Omnès, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM Math. Model. Numer. Anal. 39(6), 1203–1249 (2005)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)MathSciNetMATHCrossRef Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The gradient discretisation method. ESAIM Math. Model. Numer. Anal. 50(3), 749–781 (2016)MathSciNetMATHCrossRef Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The gradient discretisation method. ESAIM Math. Model. Numer. Anal. 50(3), 749–781 (2016)MathSciNetMATHCrossRef
28.
29.
Zurück zum Zitat Evans, L.C.: Partial differential equations, 2nd edn. American Mathematical Society, Providence (2010)MATH Evans, L.C.: Partial differential equations, 2nd edn. American Mathematical Society, Providence (2010)MATH
30.
Zurück zum Zitat Eymard, R., Féron, P., Gallouët, T., Herbin, R., Guichard, C.: Gradient schemes for the Stefan problem. Int. J. Finite 10 (2013) Eymard, R., Féron, P., Gallouët, T., Herbin, R., Guichard, C.: Gradient schemes for the Stefan problem. Int. J. Finite 10 (2013)
31.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)MathSciNetMATH Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)MathSciNetMATH
32.
Zurück zum Zitat Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41–82 (2002)MathSciNetMATHCrossRef Eymard, R., Gallouët, T., Herbin, R., Michel, A.: Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92(1), 41–82 (2002)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Eymard, R., Gallouët, T., Hilhorst, D., Slimane, Y.N.: Finite volumes and nonlinear diffusion equations. ESAIM Math. Model. Numer. Anal. 32(6), 747–761 (1998)MathSciNetMATHCrossRef Eymard, R., Gallouët, T., Hilhorst, D., Slimane, Y.N.: Finite volumes and nonlinear diffusion equations. ESAIM Math. Model. Numer. Anal. 32(6), 747–761 (1998)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Eymard, R., Hilhorst, D., Vohralík, M.: A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105(1), 73–131 (2006)MathSciNetMATHCrossRef Eymard, R., Hilhorst, D., Vohralík, M.: A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems. Numer. Math. 105(1), 73–131 (2006)MathSciNetMATHCrossRef
35.
36.
Zurück zum Zitat Gagneux, G., Madaune-Tort, M.: Unicité des solutions faibles d’ équations de diffusion-convection. Comptes Rendus de l’Académie des Sci. érie 1 Math. 318(10), 919–924 (1994)MATH Gagneux, G., Madaune-Tort, M.: Unicité des solutions faibles d’ équations de diffusion-convection. Comptes Rendus de l’Académie des Sci. érie 1 Math. 318(10), 919–924 (1994)MATH
37.
Zurück zum Zitat Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci. Comput. 37(1), A420–A438 (2015)MathSciNetMATHCrossRef Gao, Z., Wu, J.: A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes. SIAM J. Sci. Comput. 37(1), A420–A438 (2015)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Ghilani, M., Quenjel, E.H., Saad, M.: Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media. Comput. Geosci. 23(1), 55–79 (2019)MathSciNetMATHCrossRef Ghilani, M., Quenjel, E.H., Saad, M.: Positive control volume finite element scheme for a degenerate compressible two-phase flow in anisotropic porous media. Comput. Geosci. 23(1), 55–79 (2019)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 659–692. Wiley, New York (2008)MATH Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 659–692. Wiley, New York (2008)MATH
40.
Zurück zum Zitat Hermeline, F.: Une méthode de volumes finis pour les équations elliptiques du second ordre. Comptes Rendus de l’Académie des Sci. Ser. I-Math. 326(12), 1433–1436 (1998)MathSciNetMATH Hermeline, F.: Une méthode de volumes finis pour les équations elliptiques du second ordre. Comptes Rendus de l’Académie des Sci. Ser. I-Math. 326(12), 1433–1436 (1998)MathSciNetMATH
41.
Zurück zum Zitat Hermeline, F.: A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160(2), 481–499 (2000)MathSciNetMATHCrossRef Hermeline, F.: A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160(2), 481–499 (2000)MathSciNetMATHCrossRef
42.
Zurück zum Zitat Jäger, W., Kačur, J.: Solution of porous medium type systems by linear approximation schemes. Numer. Math. 60(1), 407–427 (1991)MathSciNetMATHCrossRef Jäger, W., Kačur, J.: Solution of porous medium type systems by linear approximation schemes. Numer. Math. 60(1), 407–427 (1991)MathSciNetMATHCrossRef
43.
Zurück zum Zitat Karlsen, K., Risebro, N., Towers, J.: Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22(4), 623–664 (2002)MathSciNetMATHCrossRef Karlsen, K., Risebro, N., Towers, J.: Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22(4), 623–664 (2002)MathSciNetMATHCrossRef
44.
Zurück zum Zitat Krell, S.: Schémas Volumes Finis en mécanique des fluides complexes. Ph.D. thesis, Université de Provence-Aix-Marseille I (2010) Krell, S.: Schémas Volumes Finis en mécanique des fluides complexes. Ph.D. thesis, Université de Provence-Aix-Marseille I (2010)
45.
Zurück zum Zitat Krell, S., Manzini, G.: The discrete duality finite volume method for the Stokes equations on 3-D polyhedral meshes. SIAM J. Numer. Anal. 50(2), 808–837 (2012)MathSciNetMATHCrossRef Krell, S., Manzini, G.: The discrete duality finite volume method for the Stokes equations on 3-D polyhedral meshes. SIAM J. Numer. Anal. 50(2), 808–837 (2012)MathSciNetMATHCrossRef
46.
Zurück zum Zitat Lazarov, R., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)MathSciNetMATHCrossRef Lazarov, R., Mishev, I.D., Vassilevski, P.S.: Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33(1), 31–55 (1996)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492–512 (2007)MathSciNetMATHCrossRef Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comput. Phys. 227(1), 492–512 (2007)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Nochetto, R., Schmidt, A., Verdi, C.: A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. Am. Math. Soc. 69(229), 1–24 (2000)MathSciNetMATHCrossRef Nochetto, R., Schmidt, A., Verdi, C.: A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. Am. Math. Soc. 69(229), 1–24 (2000)MathSciNetMATHCrossRef
49.
Zurück zum Zitat Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38(158), 339–374 (1982)MathSciNetMATHCrossRef Osher, S., Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38(158), 339–374 (1982)MathSciNetMATHCrossRef
50.
Zurück zum Zitat Vázquez, J.L.: The porous medium equation: mathematical theory. Oxford University Press, Oxford (2007)MATH Vázquez, J.L.: The porous medium equation: mathematical theory. Oxford University Press, Oxford (2007)MATH
51.
Zurück zum Zitat Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008)MathSciNetMATHCrossRef Yuan, G., Sheng, Z.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008)MathSciNetMATHCrossRef
Metadaten
Titel
Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations
verfasst von
El Houssaine Quenjel
Mazen Saad
Mustapha Ghilani
Marianne Bessemoulin-Chatard
Publikationsdatum
01.06.2020
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 2/2020
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-020-00367-5

Weitere Artikel der Ausgabe 2/2020

Calcolo 2/2020 Zur Ausgabe