Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Converging Shocks

verfasst von : Nicholas Apazidis, Veronica Eliasson

Erschienen in: Shock Focusing Phenomena

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the beginning of this chapter, we give on overview of early experimental work on generation of converging shocks by various methods ranging from annular shock tubes to cylindrical as well as spherical explosion chambers. These early experimental results along with Guderley’s solution raise important questions of self-similarity and stability of converging shocks. Experimental results showing the dependence of the power-law exponent on the adiabatic exponent for various gases are presented and discussed. We then give an overview of theoretical and numerical results on the stability of converging shocks based on the theory of geometrical shock dynamics. A number of experimental results on shock convergence show that converging shock experiences tendency toward planarity, e.g., generation of plane sides and sharp corners in initially cylindrical shock front. In this respect several sections of this chapter are devoted to experimental as well as numerical work on convergence of polygonal shocks and their ability to preserve symmetry and thus enhance the final energy density. Production of cylindrical and spherical converging shocks by a gradual change in the shock tube cross-section has been proposed by several researchers. We discuss the basic theoretical and numerical results as well as their experimental realization leading to extreme conditions at the focal area with gas temperatures in excess of 30,000 K. The end of this chapter is devoted to shock generation and focusing in water by means of exploding wire techniques. Experimental findings showing extreme states of matter at the focal area of a converging shock in water generated by a moderate input of initial energy are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahlborn, B., Fong, K.: Stability criteria for converging shock waves. Can. J. Phys. 56(5), 1292–1296 (1978)CrossRef Ahlborn, B., Fong, K.: Stability criteria for converging shock waves. Can. J. Phys. 56(5), 1292–1296 (1978)CrossRef
2.
Zurück zum Zitat Aki, T., Higashino, F.: A numerical study on implosion of polygonally interacting shocks and consecutive explosion in a box. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 167–172. American Institute of Physics, New York (1989) Aki, T., Higashino, F.: A numerical study on implosion of polygonally interacting shocks and consecutive explosion in a box. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 167–172. American Institute of Physics, New York (1989)
3.
Zurück zum Zitat Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of extreme state of water by spherical wire array underwater electrical explosion. Phys. Plasmas 19, 102702 (2012)CrossRef Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of extreme state of water by spherical wire array underwater electrical explosion. Phys. Plasmas 19, 102702 (2012)CrossRef
4.
Zurück zum Zitat Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array. Appl. Phys. Lett. 102, 124104 (2013)CrossRef Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array. Appl. Phys. Lett. 102, 124104 (2013)CrossRef
5.
Zurück zum Zitat Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Diagnostics of a converging strong shock wave generated by underwater explosion of a spherical wire array. J. Appl. Phys. 115, 223303 (2014)CrossRef Antonov, O., Efimov, S., Yanuka, D., Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Diagnostics of a converging strong shock wave generated by underwater explosion of a spherical wire array. J. Appl. Phys. 115, 223303 (2014)CrossRef
6.
Zurück zum Zitat Apazidis, N.: Focusing of weak shock waves in confined axisymmetric chambers. Shock Waves 3, 201–212 (1994)MATHCrossRef Apazidis, N.: Focusing of weak shock waves in confined axisymmetric chambers. Shock Waves 3, 201–212 (1994)MATHCrossRef
7.
Zurück zum Zitat Apazidis, N.: Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28, 046101 (2016)CrossRef Apazidis, N.: Numerical investigation of shock induced bubble collapse in water. Phys. Fluids 28, 046101 (2016)CrossRef
8.
Zurück zum Zitat Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301–319 (1996)MathSciNetMATHCrossRef Apazidis, N., Lesser, M.B.: On generation and convergence of polygonal-shaped shock waves. J. Fluid Mech. 309, 301–319 (1996)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Apazidis, N., Lesser, M.B., Tillmark, N. Johansson, B.: An experimental and theoretical study of converging shock waves. Shock Waves 12, 39–58 (2002)MATHCrossRef Apazidis, N., Lesser, M.B., Tillmark, N. Johansson, B.: An experimental and theoretical study of converging shock waves. Shock Waves 12, 39–58 (2002)MATHCrossRef
10.
Zurück zum Zitat Apazidis, N., Kjellander, M., Tillmark, N.: High energy concentration by symmetric shock focusing. Shock Waves 23, 361–368 (2013)CrossRef Apazidis, N., Kjellander, M., Tillmark, N.: High energy concentration by symmetric shock focusing. Shock Waves 23, 361–368 (2013)CrossRef
11.
Zurück zum Zitat Balasubramanian, K., Eliasson, V.: Numerical investigations of the porosity effect on the shock focusing process. Shock Waves 23(6), 583–594 (2013)CrossRef Balasubramanian, K., Eliasson, V.: Numerical investigations of the porosity effect on the shock focusing process. Shock Waves 23(6), 583–594 (2013)CrossRef
12.
Zurück zum Zitat Barbry, H., Mounier, C., Saillard, Y.: Transformation d’un choc plan uniforme en choc cylindrique ou spherique uniforme Classical and quantum mechanics, general physics (A1110), Report CEA-N–2516, France (1986) Barbry, H., Mounier, C., Saillard, Y.: Transformation d’un choc plan uniforme en choc cylindrique ou spherique uniforme Classical and quantum mechanics, general physics (A1110), Report CEA-N–2516, France (1986)
13.
Zurück zum Zitat Baronets, P.: Imploding shock waves in a pulsed induction discharge. Fluid Dyn. 19, 503–508 (1984)CrossRef Baronets, P.: Imploding shock waves in a pulsed induction discharge. Fluid Dyn. 19, 503–508 (1984)CrossRef
14.
Zurück zum Zitat Betelu, S.I., Aronson, D.G.: Focusing of noncircular self-similar shock waves. Phys. Rev. Lett. 87(7), 074501 (2001) Betelu, S.I., Aronson, D.G.: Focusing of noncircular self-similar shock waves. Phys. Rev. Lett. 87(7), 074501 (2001)
15.
Zurück zum Zitat Book, D., Löhner, R.: Simulation and theory of the quatrefoil instability of a converging cylindrical shock. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 149–154. American Institute of Physics, New York (1989) Book, D., Löhner, R.: Simulation and theory of the quatrefoil instability of a converging cylindrical shock. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 149–154. American Institute of Physics, New York (1989)
16.
Zurück zum Zitat Bond, C., Hill, D.J., Meiron, D.I., Dimotakis, P.E.: Shock focusing in a planar convergent geometry: experiment and simulation. J. Fluid Mech. 641, 297–333 (2009)MathSciNetMATHCrossRef Bond, C., Hill, D.J., Meiron, D.I., Dimotakis, P.E.: Shock focusing in a planar convergent geometry: experiment and simulation. J. Fluid Mech. 641, 297–333 (2009)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Brode, H.L.: Quick estimates of peak overpressure from two simultaneous blast waves. Tech. rep., Tech. Rep. DNA4503T, Defense Nuclear Agency, Aberdeen Proving Ground, MD (1977) Brode, H.L.: Quick estimates of peak overpressure from two simultaneous blast waves. Tech. rep., Tech. Rep. DNA4503T, Defense Nuclear Agency, Aberdeen Proving Ground, MD (1977)
18.
Zurück zum Zitat Butler, D.: Converging spherical and cylindrical shocks. Report No. 54/54, Burgess Hill, New York (1954) Butler, D.: Converging spherical and cylindrical shocks. Report No. 54/54, Burgess Hill, New York (1954)
19.
Zurück zum Zitat Cass, A.S.: Comparison of first generation (Dornier HM3) and second generation (Medstone STS) lithotriptors: treatment results with 13,864 renal and ureteral calculi. J. Urology. Am. Urological Ass. 153, 588–592 (1995)MathSciNetCrossRef Cass, A.S.: Comparison of first generation (Dornier HM3) and second generation (Medstone STS) lithotriptors: treatment results with 13,864 renal and ureteral calculi. J. Urology. Am. Urological Ass. 153, 588–592 (1995)MathSciNetCrossRef
20.
21.
Zurück zum Zitat Chaudhuri, A., Hadjadj, A., Sadot, O., Ben-Dor, G.: Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91–101 (2013)CrossRef Chaudhuri, A., Hadjadj, A., Sadot, O., Ben-Dor, G.: Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91–101 (2013)CrossRef
22.
Zurück zum Zitat Chessire, G., Henshaw, W.D.: Composite overlapping meshes for solution of partial differential equations. J. Comput. Phys. 1, 1 (1990) Chessire, G., Henshaw, W.D.: Composite overlapping meshes for solution of partial differential equations. J. Comput. Phys. 1, 1 (1990)
23.
Zurück zum Zitat Chester W.: The propagation of shock waves in a channel of non-uniform width. Quart. J. Mech. Appl. Math. 6(4), 440–452 (1953)MathSciNetMATHCrossRef Chester W.: The propagation of shock waves in a channel of non-uniform width. Quart. J. Mech. Appl. Math. 6(4), 440–452 (1953)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45, 1239–1301 (1954) Chester, W.: The quasi-cylindrical shock tube. Philos. Mag. 45, 1239–1301 (1954)
25.
Zurück zum Zitat Chisnell, R.F.: The normal motion of shock wave through a non-uniform one-dimensional medium. Proc. R. Soc. A 232, 350–370 (1955)MathSciNetMATHCrossRef Chisnell, R.F.: The normal motion of shock wave through a non-uniform one-dimensional medium. Proc. R. Soc. A 232, 350–370 (1955)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Chisnell R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957)MathSciNetMATHCrossRef Chisnell R.F.: The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid Mech. 2(3), 286–298 (1957)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Christopher, T.: Modeling the Dornier HM3 lithotripter. J. Acoust. Soc. Am. 96(5), 3088–3095 (1994)CrossRef Christopher, T.: Modeling the Dornier HM3 lithotripter. J. Acoust. Soc. Am. 96(5), 3088–3095 (1994)CrossRef
29.
Zurück zum Zitat Christopher, P.T., Parker, K.J.: New approaches to nonlinear diffractive field propagation. J. Acoust. Soc. Am. 90(5), 488–499 (1991)CrossRef Christopher, P.T., Parker, K.J.: New approaches to nonlinear diffractive field propagation. J. Acoust. Soc. Am. 90(5), 488–499 (1991)CrossRef
30.
Zurück zum Zitat Cocchi, J.P.,Saurel, R.,Loraud, J.C.: Treatment of interface problems with Godunov-type schemes. Shock Waves 65, 347–357 (1996)MATHCrossRef Cocchi, J.P.,Saurel, R.,Loraud, J.C.: Treatment of interface problems with Godunov-type schemes. Shock Waves 65, 347–357 (1996)MATHCrossRef
31.
Zurück zum Zitat Coleman, A.J., Saunders, J.E.: A survey of the acoustic output of commercial extracorporeal shockwave lithotripters. Ultasound Med. Biol. 15, 213–227 (1989)CrossRef Coleman, A.J., Saunders, J.E.: A survey of the acoustic output of commercial extracorporeal shockwave lithotripters. Ultasound Med. Biol. 15, 213–227 (1989)CrossRef
32.
Zurück zum Zitat Davitt, K., Arvengas, A., Caupin, F.: Water at the cavitation limit: density of the metastable liquid and size of the critical bubble. Europhys. Lett. 90, 16002 (2010)CrossRef Davitt, K., Arvengas, A., Caupin, F.: Water at the cavitation limit: density of the metastable liquid and size of the critical bubble. Europhys. Lett. 90, 16002 (2010)CrossRef
33.
Zurück zum Zitat De Neef, T., Hechtman, C.: Numerical study of the flow due to a cylindrical implosion. Comput. Fluids 6, 185–202 (1978) De Neef, T., Hechtman, C.: Numerical study of the flow due to a cylindrical implosion. Comput. Fluids 6, 185–202 (1978)
34.
Zurück zum Zitat Demmig, F., Hemmsoth, H.H.: Model computation of converging cylindrical shock waves – initial configurations, propagation, and reflection. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 155–160. American Institute of Physics, New York (1989) Demmig, F., Hemmsoth, H.H.: Model computation of converging cylindrical shock waves – initial configurations, propagation, and reflection. In: Current Topics in Shock Waves: 17th Proceedings of the International Symposium on Shock Waves and Shock Tubes, Bethlehem, PA, 17–21 July (A91-40576 17-34), pp. 155–160. American Institute of Physics, New York (1989)
35.
Zurück zum Zitat Dennen, R.S., Wilson, L.N.: Electrical generation of imploding shock waves. In: Exploding Wires, pp. 145–157. Plenum Press, New York (1962)CrossRef Dennen, R.S., Wilson, L.N.: Electrical generation of imploding shock waves. In: Exploding Wires, pp. 145–157. Plenum Press, New York (1962)CrossRef
36.
Zurück zum Zitat Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2006)CrossRef Dimotakis, P.E., Samtaney, R.: Planar shock cylindrical focusing by a perfect-gas lens. Phys. Fluids 18, 031705 (2006)CrossRef
37.
Zurück zum Zitat Dumitrescu, L.Z.: On efficient shock-focusing configurations. In: Proceedings, 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia (1992) Dumitrescu, L.Z.: On efficient shock-focusing configurations. In: Proceedings, 11th Australian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia (1992)
38.
Zurück zum Zitat Eliasson, V., Gross, J.: Experimental investigation of shock wave amplification using multiple munitions. In: Ben-Dor, G., et al. (eds.) 30th International Symposium on Shock Waves 2, pp. 1017–1021 (2017)CrossRef Eliasson, V., Gross, J.: Experimental investigation of shock wave amplification using multiple munitions. In: Ben-Dor, G., et al. (eds.) 30th International Symposium on Shock Waves 2, pp. 1017–1021 (2017)CrossRef
39.
Zurück zum Zitat Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)CrossRef Eliasson, V., Apazidis, N., Tillmark, N., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)CrossRef
40.
Zurück zum Zitat Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)CrossRef Eliasson, V., Apazidis, N., Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)CrossRef
41.
Zurück zum Zitat Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock focusing in air and argon. Phys. Fluids 19, 106106 (2007) Eliasson, V., Tillmark, N., Szeri, A.J., Apazidis, N.: Light emission during shock focusing in air and argon. Phys. Fluids 19, 106106 (2007)
42.
Zurück zum Zitat Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)CrossRef Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)CrossRef
43.
Zurück zum Zitat Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)CrossRef Eliasson, V., Mello, M., Rosakis, A.J., Dimotakis, P.E.: Experimental investigation of converging shocks in water with various confinement materials. Shock Waves 20, 395–408 (2010)CrossRef
44.
Zurück zum Zitat El Mekki-Azouzi, M., Ramboz, C., Lenain, J.-F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9, 38–41 (2013)CrossRef El Mekki-Azouzi, M., Ramboz, C., Lenain, J.-F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9, 38–41 (2013)CrossRef
45.
Zurück zum Zitat Evans, A.K.: Instability of converging shock waves and sonoluminescence. Phys. Fluids 22(3), 5004–5011 (1996)MathSciNetCrossRef Evans, A.K.: Instability of converging shock waves and sonoluminescence. Phys. Fluids 22(3), 5004–5011 (1996)MathSciNetCrossRef
46.
Zurück zum Zitat Fisher, J.C.: The fracture of liquids. J. Appl. Phys. 19, 1062–1067 (1948)CrossRef Fisher, J.C.: The fracture of liquids. J. Appl. Phys. 19, 1062–1067 (1948)CrossRef
47.
Zurück zum Zitat Fong, K., Ahlborn, B.: Stability of converging shock waves. Phys. Fluids 22(3), 416–421 (1979)CrossRef Fong, K., Ahlborn, B.: Stability of converging shock waves. Phys. Fluids 22(3), 416–421 (1979)CrossRef
48.
Zurück zum Zitat Fujumoto, Y., Mishkin, E.: Analysis of spherically imploding shocks. Phys. Fluids 21, 1933 (1978)MATHCrossRef Fujumoto, Y., Mishkin, E.: Analysis of spherically imploding shocks. Phys. Fluids 21, 1933 (1978)MATHCrossRef
49.
Zurück zum Zitat Gardner, G.H., Book, D.L., Bernstein I.B.: Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 114, 41–58 (1982)MATHCrossRef Gardner, G.H., Book, D.L., Bernstein I.B.: Stability of imploding shocks in the CCW approximation. J. Fluid Mech. 114, 41–58 (1982)MATHCrossRef
50.
Zurück zum Zitat Glass, I.I.: Shock Waves and Man. University of Toronto Institute for Aerospace Studies, Toronto (1974) Glass, I.I.: Shock Waves and Man. University of Toronto Institute for Aerospace Studies, Toronto (1974)
51.
Zurück zum Zitat Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959) Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik 47, 271–306 (1959)
52.
Zurück zum Zitat Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942) Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942)
53.
Zurück zum Zitat Gustafsson, G.: Focusing of weak shock waves in a slightly elliptical cavity. J. Sound Vib. 116(1), 137–148 (1987)MATHCrossRef Gustafsson, G.: Focusing of weak shock waves in a slightly elliptical cavity. J. Sound Vib. 116(1), 137–148 (1987)MATHCrossRef
54.
Zurück zum Zitat Hafner, P.: Strong converging shock waves near the center of convergence: a power series solution. J. Appl. Math. 48, 1244 (1988)MathSciNetMATHCrossRef Hafner, P.: Strong converging shock waves near the center of convergence: a power series solution. J. Appl. Math. 48, 1244 (1988)MathSciNetMATHCrossRef
55.
Zurück zum Zitat Hamilton, M.F.: Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J. Acoust. Soc. Am. 93(3), 1256–1266 (1993)CrossRef Hamilton, M.F.: Transient axial solution for the reflection of a spherical wave from a concave ellipsoidal mirror. J. Acoust. Soc. Am. 93(3), 1256–1266 (1993)CrossRef
56.
Zurück zum Zitat Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)MATHCrossRef Henshaw, W.D., Smyth, N.F., Schwendeman, D.W.: Numerical shock propagation using geometrical shock dynamics. J. Fluid Mech. 171, 519–545 (1986)MATHCrossRef
57.
Zurück zum Zitat Hikida, S., Needham, C.E.: Low amplitude multiple burst (lamb) model. Tech. rep., S-cubed Final Report, S-CUBED-R-81-5067 (1981) Hikida, S., Needham, C.E.: Low amplitude multiple burst (lamb) model. Tech. rep., S-cubed Final Report, S-CUBED-R-81-5067 (1981)
58.
Zurück zum Zitat Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)MATHCrossRef Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)MATHCrossRef
59.
Zurück zum Zitat Hosseini, S.H.R., Takayama, K.: Implosion from a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)MATHCrossRef Hosseini, S.H.R., Takayama, K.: Implosion from a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)MATHCrossRef
60.
Zurück zum Zitat Johansson, B., Apazidis, N., Lesser M.B.: On shock waves in a confined reflector. Wear 233–235, 79–85 (1999)CrossRef Johansson, B., Apazidis, N., Lesser M.B.: On shock waves in a confined reflector. Wear 233–235, 79–85 (1999)CrossRef
61.
Zurück zum Zitat Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124(4), 2011–2020 (2008)CrossRef Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124(4), 2011–2020 (2008)CrossRef
62.
63.
Zurück zum Zitat Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock Waves 18, 21–33 (2008)MATHCrossRef Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock Waves 18, 21–33 (2008)MATHCrossRef
64.
Zurück zum Zitat Keefer, J.H., Reisler, R.E.: Simultaneous and non-simultaneous multiple detonations. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, New South Wales, Australia, pp. 543–552 (1984) Keefer, J.H., Reisler, R.E.: Simultaneous and non-simultaneous multiple detonations. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, New South Wales, Australia, pp. 543–552 (1984)
65.
Zurück zum Zitat Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 046102 (2010)MATHCrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Thermal radiation from a converging shock implosion. Phys. Fluids 22, 046102 (2010)MATHCrossRef
66.
Zurück zum Zitat Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)MATHCrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects. Phys. Fluids 22, 116102 (2010)MATHCrossRef
67.
Zurück zum Zitat Kjellander, M., Tillmark, N., Apazidis, N.: Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23(11), 116103 (2011)CrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Experimental determination of self-similarity constant for converging cylindrical shocks. Phys. Fluids 23(11), 116103 (2011)CrossRef
68.
Zurück zum Zitat Kjellander, M., Tillmark, N., Apazidis, N.: Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24, 126103 (2012)CrossRef Kjellander, M., Tillmark, N., Apazidis, N.: Energy concentration by spherical converging shocks generated in a shock tube. Phys. Fluids 24, 126103 (2012)CrossRef
69.
Zurück zum Zitat Kleine, H.: Time resolved shadowgraphs of focusing cylindrical shock waves. Study treatise at the Stoßenwellenlabor, RWTH Achen, FRG (1985) Kleine, H.: Time resolved shadowgraphs of focusing cylindrical shock waves. Study treatise at the Stoßenwellenlabor, RWTH Achen, FRG (1985)
70.
Zurück zum Zitat Knystautas, R., Lee, B., Lee, J.: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. 1, 165–168 (1969) Knystautas, R., Lee, B., Lee, J.: Diagnostic experiments on converging detonations. Phys. Fluids. Suppl. 1, 165–168 (1969)
71.
Zurück zum Zitat Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array. Phys. Plasmas 20, 112107 (2013)CrossRef Kozlov, M., Gurovich, V.T., Krasik, Y.E.: Stability of imploding shocks generated by underwater electrical explosion of cylindrical wire array. Phys. Plasmas 20, 112107 (2013)CrossRef
72.
73.
Zurück zum Zitat Lazarus, R., Richtmyer, R.: Similarity Solutions for Converging Shocks. Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM (1977) Lazarus, R., Richtmyer, R.: Similarity Solutions for Converging Shocks. Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM (1977)
74.
Zurück zum Zitat Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501 (2016) Liverts, M., Apazidis, N.: Limiting temperatures of spherical shock wave implosion. Phys. Rev. Lett. 116, 014501 (2016)
75.
Zurück zum Zitat Matsuo, H., Nakamura, Y.: Experiments on cylindrically converging blast waves. J. Appl. Phys. 51, 3126–3129 (1980) Matsuo, H., Nakamura, Y.: Experiments on cylindrically converging blast waves. J. Appl. Phys. 51, 3126–3129 (1980)
76.
Zurück zum Zitat Matsuo, H., Nakamura, Y.: Cylindrically converging blast waves in air. J. Appl. Phys. 52, 4503–4507 (1981)CrossRef Matsuo, H., Nakamura, Y.: Cylindrically converging blast waves in air. J. Appl. Phys. 52, 4503–4507 (1981)CrossRef
77.
Zurück zum Zitat Matsuo, M., Ebihara, K., Ohya, Y.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58(7), 2487–2491 (1985)CrossRef Matsuo, M., Ebihara, K., Ohya, Y.: Spectroscopic study of cylindrically converging shock waves. J. Appl. Phys. 58(7), 2487–2491 (1985)CrossRef
78.
Zurück zum Zitat McMillen, J.H.: Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68(9,10),198–210 (1945)CrossRef McMillen, J.H.: Shock wave pressures in water produced by impact of small spheres. Phys. Rev. 68(9,10),198–210 (1945)CrossRef
79.
80.
Zurück zum Zitat Müller, M.: Comparison of Dornier lithotripters: measurement of shock wave fields and fragmentation effectiveness. Biomed. Tech. 35, 250–262 (1990) Müller, M.: Comparison of Dornier lithotripters: measurement of shock wave fields and fragmentation effectiveness. Biomed. Tech. 35, 250–262 (1990)
81.
Zurück zum Zitat Nakamura, Y.: Analysis of self-similar problems of imploding shock waves by method of characteristics. Phys. Fluids 26, 1234 (1983)MATHCrossRef Nakamura, Y.: Analysis of self-similar problems of imploding shock waves by method of characteristics. Phys. Fluids 26, 1234 (1983)MATHCrossRef
82.
Zurück zum Zitat Neemeh, R.A., Ahmad, Z.: Stability and collapsing mechanism of strong and weak converging cylindrical shock waves subjected to external perturbation. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, Berkeley, CA, 28 July–2 Aug, pp. 423–430. Stanford University Press, Stanford (1986) Neemeh, R.A., Ahmad, Z.: Stability and collapsing mechanism of strong and weak converging cylindrical shock waves subjected to external perturbation. In: Proceeding of the 14th International Symposium on Shock Waves and Shock Tubes, Berkeley, CA, 28 July–2 Aug, pp. 423–430. Stanford University Press, Stanford (1986)
83.
Zurück zum Zitat Norris, A.N.: Flexural waves on narrow plates. J. Acoust. Soc. Am. 113, 2647–2658 (2003)CrossRef Norris, A.N.: Flexural waves on narrow plates. J. Acoust. Soc. Am. 113, 2647–2658 (2003)CrossRef
84.
Zurück zum Zitat Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22(7), 878–886 (1951)CrossRef Perry, R.W., Kantrowitz, A.: The production and stability of converging shock waves. J. Appl. Phys. 22(7), 878–886 (1951)CrossRef
85.
Zurück zum Zitat Ponchaut, N., Hornung, H.G., Mouton, D.I.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103 (2006)MathSciNetMATHCrossRef Ponchaut, N., Hornung, H.G., Mouton, D.I.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103 (2006)MathSciNetMATHCrossRef
86.
Zurück zum Zitat Qiu, S., Eliasson, V.: Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26(3), 287–297 (2016)CrossRef Qiu, S., Eliasson, V.: Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26(3), 287–297 (2016)CrossRef
87.
Zurück zum Zitat Qiu, S., Liu, K., Eliasson, V.: Parallel implementation of geometrical shock dynamics for two-dimensional converging shock waves. Comput. Phys. Commun. 207, 186–192 (2016)MATHCrossRef Qiu, S., Liu, K., Eliasson, V.: Parallel implementation of geometrical shock dynamics for two-dimensional converging shock waves. Comput. Phys. Commun. 207, 186–192 (2016)MATHCrossRef
88.
Zurück zum Zitat Ramsey S.D., Kammb J.R., Bolstad J.H.: The Guderley problem revisited. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)MathSciNetCrossRef Ramsey S.D., Kammb J.R., Bolstad J.H.: The Guderley problem revisited. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)MathSciNetCrossRef
89.
Zurück zum Zitat Roberts, D.E., Glass, I.I.: Spectroscopic investigation of combustion-driven spherical implosion waves. Phys. Fluids 14, 1662–1670 1971CrossRef Roberts, D.E., Glass, I.I.: Spectroscopic investigation of combustion-driven spherical implosion waves. Phys. Fluids 14, 1662–1670 1971CrossRef
90.
Zurück zum Zitat Roig, R.A., Glass, I.I.: Spectroscopic study of combustion-driven implosions. Phys. Fluids 20, 1651–1656 (1977)CrossRef Roig, R.A., Glass, I.I.: Spectroscopic study of combustion-driven implosions. Phys. Fluids 20, 1651–1656 (1977)CrossRef
91.
Zurück zum Zitat Saillard, Y., Barbry, H., Mounier, C.: Transformation of a plane uniform shock into cylindrical or spherical uniform shock by wall shaping. In: Proceedings of the XV-th International Symposium on Shack Tubes and Waves. Stanford University Press, Stanford (1985) Saillard, Y., Barbry, H., Mounier, C.: Transformation of a plane uniform shock into cylindrical or spherical uniform shock by wall shaping. In: Proceedings of the XV-th International Symposium on Shack Tubes and Waves. Stanford University Press, Stanford (1985)
92.
Zurück zum Zitat Saito, T., Glass, I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)CrossRef Saito, T., Glass, I.: Temperature measurements at an implosion focus. Proc. R. Soc. Lond. A 384, 217–231 (1982)CrossRef
93.
Zurück zum Zitat Sankin, G.N., Zhou, Y., Zhong, P.: Focusing of shock waves induced by optical breakdown in water. J. Acoust. Soc. Am. 123(6), 4071–4081 (2008)CrossRef Sankin, G.N., Zhou, Y., Zhong, P.: Focusing of shock waves induced by optical breakdown in water. J. Acoust. Soc. Am. 123(6), 4071–4081 (2008)CrossRef
95.
96.
Zurück zum Zitat Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical column. Phys. Fluids 28, 056102 (2016) Sembian, S., Liverts, M., Tillmark, N., Apazidis, N.: Plane shock wave interaction with a cylindrical column. Phys. Fluids 28, 056102 (2016)
97.
Zurück zum Zitat Sommerfeld, M., Müller, H.M.: Experimental and numerical studies of shock wave focusing in water. Exp. Fluids 6, 209–216 (1988)CrossRef Sommerfeld, M., Müller, H.M.: Experimental and numerical studies of shock wave focusing in water. Exp. Fluids 6, 209–216 (1988)CrossRef
98.
Zurück zum Zitat Stan, C.A., Willmont, P.R., Stone, H.A., Koglin, J.E., Mengling, L., Aquila, A.L., Robinson, J.S., Gumerlock, K.L., Blaj, G., Sierra, R.G., Boulet, S., Guillet, S.A.H., Curtis, R.H., Vetter, S.L., Loos, H., Turner, J.L., Decker, F.-J.: Negative pressures and spallation in water drops subjected to nanosecond shock waves. Phys. Chem. Lett. 7, 2055–2062 (2016)CrossRef Stan, C.A., Willmont, P.R., Stone, H.A., Koglin, J.E., Mengling, L., Aquila, A.L., Robinson, J.S., Gumerlock, K.L., Blaj, G., Sierra, R.G., Boulet, S., Guillet, S.A.H., Curtis, R.H., Vetter, S.L., Loos, H., Turner, J.L., Decker, F.-J.: Negative pressures and spallation in water drops subjected to nanosecond shock waves. Phys. Chem. Lett. 7, 2055–2062 (2016)CrossRef
99.
Zurück zum Zitat Stanyukovich, K.: Unsteady Motion of Continuous Media. Pergamon, Oxford (1960)CrossRef Stanyukovich, K.: Unsteady Motion of Continuous Media. Pergamon, Oxford (1960)CrossRef
100.
Zurück zum Zitat Stanyukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, Oxford (1960)CrossRef Stanyukovich, K.P.: Unsteady Motion of Continuous Media. Pergamon Press, Oxford (1960)CrossRef
101.
Zurück zum Zitat Starkenberg, J.K., Benjamin, K.J.: Predicting coalescence of blast waves from sequentially exploding ammunition stacks. Tech. rep., Army Research Lab Report ARL-TR-645 (1994) Starkenberg, J.K., Benjamin, K.J.: Predicting coalescence of blast waves from sequentially exploding ammunition stacks. Tech. rep., Army Research Lab Report ARL-TR-645 (1994)
102.
Zurück zum Zitat Sturtevant, B., Kulkarny, V.A.: The focusing of weak shock waves. J. Fluid Mech. 73(04), 651–671 (1976)CrossRef Sturtevant, B., Kulkarny, V.A.: The focusing of weak shock waves. J. Fluid Mech. 73(04), 651–671 (1976)CrossRef
103.
Zurück zum Zitat Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189(1), 305–329 (2003)MathSciNetMATHCrossRef Sun, M., Takayama, K.: An artificially upstream flux vector splitting scheme for the Euler equations. J. Comput. Phys. 189(1), 305–329 (2003)MathSciNetMATHCrossRef
104.
Zurück zum Zitat Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the Stability of Converging Cylindrical Shock Waves. Shock Waves Marseille IV, pp. 117–127. Springer, Berlin (1984) Takayama, K., Onodera, O., Hoshizawa, Y.: Experiments on the Stability of Converging Cylindrical Shock Waves. Shock Waves Marseille IV, pp. 117–127. Springer, Berlin (1984)
105.
Zurück zum Zitat Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987) Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987)
106.
Zurück zum Zitat Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)MATHCrossRef Taylor, G.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)MATHCrossRef
107.
Zurück zum Zitat Trevena, D.H.: Cavitation an generation tension in liquid. J. Phys. D: Appl. Phys. 17, 2139–2164 (1984)CrossRef Trevena, D.H.: Cavitation an generation tension in liquid. J. Phys. D: Appl. Phys. 17, 2139–2164 (1984)CrossRef
108.
109.
Zurück zum Zitat Wan, Q., Eliasson, V.: Numerical study of shock wave attenuation in two-dimensional ducts using solid obstacles – How to utilize shock focusing techniques to attenuate shock waves. Aerospace 2, 203–221 (2015)CrossRef Wan, Q., Eliasson, V.: Numerical study of shock wave attenuation in two-dimensional ducts using solid obstacles – How to utilize shock focusing techniques to attenuate shock waves. Aerospace 2, 203–221 (2015)CrossRef
110.
Zurück zum Zitat Wang, C., Eliasson, V.: Shock wave focusing in water inside convergent structures. Int. J. Multiphys. 6, 267–282 (2012)CrossRef Wang, C., Eliasson, V.: Shock wave focusing in water inside convergent structures. Int. J. Multiphys. 6, 267–282 (2012)CrossRef
113.
Zurück zum Zitat Wang, C., Grunenfelder, L., Patwardhan, R., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 2: strong coupling. Ocean Eng. 102, 185–196 (2015)CrossRef Wang, C., Grunenfelder, L., Patwardhan, R., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 2: strong coupling. Ocean Eng. 102, 185–196 (2015)CrossRef
114.
Zurück zum Zitat Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991)CrossRef Watanabe, M., Takayama, K.: Stability of converging cylindrical shock waves. Shock Waves 1, 149–160 (1991)CrossRef
115.
Zurück zum Zitat Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. Theor. Appl. Mech. 32, 99–104 (1995) Watanabe, M., Onodera, O., Takayama, K.: Shock wave focusing in a vertical annular shock tube. Theor. Appl. Mech. 32, 99–104 (1995)
116.
117.
Zurück zum Zitat Whitham, G.B.: A new approach to problems of shock dynamics Part I Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)MathSciNetMATHCrossRef Whitham, G.B.: A new approach to problems of shock dynamics Part I Two-dimensional problems. J. Fluid Mech. 2, 145–171 (1957)MathSciNetMATHCrossRef
118.
Zurück zum Zitat Whitham, G.B.: A new approach to problems of shock dynamics Part II Two-dimensional problems. J. Fluid Mech. 5, 369–386 (1957)MathSciNetMATHCrossRef Whitham, G.B.: A new approach to problems of shock dynamics Part II Two-dimensional problems. J. Fluid Mech. 5, 369–386 (1957)MathSciNetMATHCrossRef
119.
Zurück zum Zitat Whitham, G.B.: A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31, 449–453 (1968)MATHCrossRef Whitham, G.B.: A note on shock dynamics relative to a moving frame. J. Fluid Mech. 31, 449–453 (1968)MATHCrossRef
120.
Zurück zum Zitat Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH
121.
Zurück zum Zitat Wilson, D.A., Hoyt, J.W., McKune, J.W.: Measurement of tensile strength of liquids by an explosion technique. Nature 253, 723–725 (1975)CrossRef Wilson, D.A., Hoyt, J.W., McKune, J.W.: Measurement of tensile strength of liquids by an explosion technique. Nature 253, 723–725 (1975)CrossRef
122.
Zurück zum Zitat Wu, J., Neemeh, R., Ostrowski, P.: Experiments on the stability of converging cylindrical shock waves. AIAA J. 19, 257–258 (1981)CrossRef Wu, J., Neemeh, R., Ostrowski, P.: Experiments on the stability of converging cylindrical shock waves. AIAA J. 19, 257–258 (1981)CrossRef
123.
Zurück zum Zitat Zel’dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, New York (1966) Zel’dovich, Y.B., Raizer, Y.P.: Physics of shock waves and high-temperature hydrodynamic phenomena. Dover Publications, New York (1966)
124.
Zurück zum Zitat Zhai, Z., Liu, C., Qin, F., Yang, J., Luo, X.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)MATHCrossRef Zhai, Z., Liu, C., Qin, F., Yang, J., Luo, X.: Generation of cylindrical converging shock waves based on shock dynamics theory. Phys. Fluids 22, 041701 (2010)MATHCrossRef
125.
Zurück zum Zitat Zheng, Q., Durben, D.J., Wolf, G.H., Angel, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254, 829–832 (1991)CrossRef Zheng, Q., Durben, D.J., Wolf, G.H., Angel, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254, 829–832 (1991)CrossRef
Metadaten
Titel
Converging Shocks
verfasst von
Nicholas Apazidis
Veronica Eliasson
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-75866-4_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.