Skip to main content

2019 | OriginalPaper | Buchkapitel

Conversion of CO2 into Polymers

verfasst von : Yusheng Qin, Xianhong Wang

Erschienen in: Green Chemistry and Chemical Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

Biodegradable polymer
Biodegradable polymers are a specific type of polymer that degrade as a result of the action of microorganisms and/or enzymes.
Carbon dioxide (CO2)
A colorless gas formed during the combustion of any material containing carbon and an important greenhouse gas.
CO2-based polymer polyol (CO2-polyol)
Low molecular weight (0.3 kg mol−1 < Mn < 10.0 kg mol−1) polymer derived from the copolymerization of carbon dioxide and propylene oxide, containing two or more terminal hydroxyl groups available for chemical reaction with polyisocyanate to produce polyurethane.
Copolymerization
Polymerization of two or more monomers in the same time to form a copolymer.
Poly(propylene carbonate)
Copolymer derived from the copolymerization of carbon dioxide and propylene oxide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dibenedetto A, Angelini A, Stufano P (2014) Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J Chem Technol Biotechnol 89(3):334–353CrossRef Dibenedetto A, Angelini A, Stufano P (2014) Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J Chem Technol Biotechnol 89(3):334–353CrossRef
2.
Zurück zum Zitat Rokicki A, Kuran W (1981) The application of carbon-dioxide as a direct material for polymer syntheses in polymerization and Polycondensation reactions. J Macromol Sci Rev Macromol Chem C21(1):135–186 Rokicki A, Kuran W (1981) The application of carbon-dioxide as a direct material for polymer syntheses in polymerization and Polycondensation reactions. J Macromol Sci Rev Macromol Chem C21(1):135–186
3.
Zurück zum Zitat Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43(48):6618–6639CrossRef Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43(48):6618–6639CrossRef
4.
Zurück zum Zitat Sugimoto H, Inoue S (2004) Copolymerization of carbon dioxide and epoxide. J Polym Sci A 42:5561–5573CrossRef Sugimoto H, Inoue S (2004) Copolymerization of carbon dioxide and epoxide. J Polym Sci A 42:5561–5573CrossRef
5.
Zurück zum Zitat Darensbourg DJ (2007) Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107(6):2388–2410PubMedCrossRef Darensbourg DJ (2007) Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107(6):2388–2410PubMedCrossRef
6.
Zurück zum Zitat Beckman EJ (1999) Polymer synthesis – making polymers from carbon dioxide. Science 283(5404):946–947CrossRef Beckman EJ (1999) Polymer synthesis – making polymers from carbon dioxide. Science 283(5404):946–947CrossRef
7.
Zurück zum Zitat Luinstra GA (2008) Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym Rev 48(1):192–219CrossRef Luinstra GA (2008) Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym Rev 48(1):192–219CrossRef
8.
Zurück zum Zitat Qin YS, Wang XH (2010) Carbon dioxide-based copolymers: environmental benefits of PPC, an industrially viable catalyst. Biotechnol J 5:1164–1180PubMedCrossRef Qin YS, Wang XH (2010) Carbon dioxide-based copolymers: environmental benefits of PPC, an industrially viable catalyst. Biotechnol J 5:1164–1180PubMedCrossRef
9.
Zurück zum Zitat Kember MR, Buchard A, Williams CK (2010) Catalysts for CO2/epoxide copolymerisation. Chem Commun 47(1):141–163CrossRef Kember MR, Buchard A, Williams CK (2010) Catalysts for CO2/epoxide copolymerisation. Chem Commun 47(1):141–163CrossRef
10.
Zurück zum Zitat Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol Chem 130:210–220CrossRef Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol Chem 130:210–220CrossRef
11.
Zurück zum Zitat Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci B 7(4):287–292CrossRef Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci B 7(4):287–292CrossRef
12.
Zurück zum Zitat Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of epoxides and compounds with a hetero double bond. Kinet Mech Polyreactions Int Symp Macromol Chem Prepr 2:107–110 Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of epoxides and compounds with a hetero double bond. Kinet Mech Polyreactions Int Symp Macromol Chem Prepr 2:107–110
13.
Zurück zum Zitat Kobayashi M, Inoue S, Tsuruta T (1971) Diethylzinc-dihydric phenol system as catalyst for the copolymerization of carbon dioxide with propylene oxide. Macromolecules 4(5):658–659CrossRef Kobayashi M, Inoue S, Tsuruta T (1971) Diethylzinc-dihydric phenol system as catalyst for the copolymerization of carbon dioxide with propylene oxide. Macromolecules 4(5):658–659CrossRef
14.
Zurück zum Zitat Kuran W, Pasynkiewicz S, Skupinska J, Rokicki A (1976) Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts. Makromol Chem 177(1):11–20CrossRef Kuran W, Pasynkiewicz S, Skupinska J, Rokicki A (1976) Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts. Makromol Chem 177(1):11–20CrossRef
15.
Zurück zum Zitat Soga K, Hyakkoku K, Ikeda S (1978) Copolymerization of carbon dioxide and epoxypropane by using cobalt(II) acetate and acetic acid. Makromol Chem 179(12):2837–2843CrossRef Soga K, Hyakkoku K, Ikeda S (1978) Copolymerization of carbon dioxide and epoxypropane by using cobalt(II) acetate and acetic acid. Makromol Chem 179(12):2837–2843CrossRef
16.
Zurück zum Zitat Soga K, Uenishi K, Hosoda S, Ikeda S (1977) Copolymerization of carbon dioxide and propylene oxide with new catalysts. Makromol Chem 178(3):893–897CrossRef Soga K, Uenishi K, Hosoda S, Ikeda S (1977) Copolymerization of carbon dioxide and propylene oxide with new catalysts. Makromol Chem 178(3):893–897CrossRef
17.
Zurück zum Zitat Ree M, Bae JY, Jung JH, Shin TJ, Hwang YT, Chang T (2000) Copolymerization of carbon dioxide and propylene oxide using various zinc glutarate derivatives as catalysts. Polym Eng Sci 40(7):1542–1552CrossRef Ree M, Bae JY, Jung JH, Shin TJ, Hwang YT, Chang T (2000) Copolymerization of carbon dioxide and propylene oxide using various zinc glutarate derivatives as catalysts. Polym Eng Sci 40(7):1542–1552CrossRef
18.
Zurück zum Zitat Kim J-S, Kim H, Yoon J, Heo K, Ree M (2005) Synthesis of zinc glutarates with various morphologies using an amphiphilic template and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. J Polym Sci A 43(18):4079–4088CrossRef Kim J-S, Kim H, Yoon J, Heo K, Ree M (2005) Synthesis of zinc glutarates with various morphologies using an amphiphilic template and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. J Polym Sci A 43(18):4079–4088CrossRef
19.
Zurück zum Zitat Kruper WJ Jr, Swart DJ (1985) Carbon dioxide-oxirane copolymers prepared using double metal cyanide complexes. US4500704 Kruper WJ Jr, Swart DJ (1985) Carbon dioxide-oxirane copolymers prepared using double metal cyanide complexes. US4500704
20.
Zurück zum Zitat Chen LB (1992) Activation and copolymerization of carbon dioxide by macromolecule-metal complexes. Makromol Chem Macromol Symp 59:75–82CrossRef Chen LB (1992) Activation and copolymerization of carbon dioxide by macromolecule-metal complexes. Makromol Chem Macromol Symp 59:75–82CrossRef
21.
Zurück zum Zitat Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS (2005) Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. Macromol Symp 224:181–191CrossRef Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS (2005) Biodegradable polycarbonate synthesis by copolymerization of carbon dioxide with epoxides using a heterogeneous zinc complex. Macromol Symp 224:181–191CrossRef
22.
Zurück zum Zitat Kim I, Yi MJ, Lee KJ, Park DW, Kim BU, Ha CS (2006) Aliphatic polycarbonate synthesis by copolymerization of carbon dioxide with epoxides over double metal cyanide catalysts prepared by using ZnX2 (X=F, Cl, Br, I). Catal Today 111(3–4):292–296CrossRef Kim I, Yi MJ, Lee KJ, Park DW, Kim BU, Ha CS (2006) Aliphatic polycarbonate synthesis by copolymerization of carbon dioxide with epoxides over double metal cyanide catalysts prepared by using ZnX2 (X=F, Cl, Br, I). Catal Today 111(3–4):292–296CrossRef
23.
Zurück zum Zitat Robertson NJ, Qin Z, Dallinger GC, Lobkovsky EB, Lee S, Coates GW (2006) Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Trans 45:5390–5395CrossRef Robertson NJ, Qin Z, Dallinger GC, Lobkovsky EB, Lee S, Coates GW (2006) Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. Dalton Trans 45:5390–5395CrossRef
24.
Zurück zum Zitat Darensbourg DJ, Adams MJ, Yarbrough JC (2001) Toward the Design of Double Metal Cyanides for the copolymerization of CO2 and epoxides. Inorg Chem 40(26):6543–6544PubMedCrossRef Darensbourg DJ, Adams MJ, Yarbrough JC (2001) Toward the Design of Double Metal Cyanides for the copolymerization of CO2 and epoxides. Inorg Chem 40(26):6543–6544PubMedCrossRef
25.
Zurück zum Zitat Zhang XH, Huang YJ, Liu F, Sun XK, Fan ZQ, Qi GR (2009) Copolymerization of carbon disulfide and cyclohexene oxide with a double-metal cyanide complex catalyst. Acta Polym Sin 6:546–552CrossRef Zhang XH, Huang YJ, Liu F, Sun XK, Fan ZQ, Qi GR (2009) Copolymerization of carbon disulfide and cyclohexene oxide with a double-metal cyanide complex catalyst. Acta Polym Sin 6:546–552CrossRef
26.
Zurück zum Zitat Shen ZQ, Chen XH, Zhang YF (1994) New catalytic-systems for the fixation of carbon-dioxide. 2. Synthesis of high-molecular-weight epichlorohydrin carbon-dioxide copolymer with rare-Earth phosphonates triisobutyl-aluminum systems. Macromol Chem Phys 195(6):2003–2011CrossRef Shen ZQ, Chen XH, Zhang YF (1994) New catalytic-systems for the fixation of carbon-dioxide. 2. Synthesis of high-molecular-weight epichlorohydrin carbon-dioxide copolymer with rare-Earth phosphonates triisobutyl-aluminum systems. Macromol Chem Phys 195(6):2003–2011CrossRef
27.
Zurück zum Zitat Zhao XJ, Liu BY, Wang XH, Zhao DQ, Wang FS (2000) Process for preparing high-molecular-weight aliphatic polycarbonates. CN1257885 Zhao XJ, Liu BY, Wang XH, Zhao DQ, Wang FS (2000) Process for preparing high-molecular-weight aliphatic polycarbonates. CN1257885
28.
Zurück zum Zitat Quan ZL, Min JD, Zhou QH, Xie D, Liu JJ, Wang XH, Zhao XJ, Wang FS (2003) Synthesis and properties of carbon dioxide – epoxides copolymers from rare earth metal catalyst. Macromol Symp 195:281–286CrossRef Quan ZL, Min JD, Zhou QH, Xie D, Liu JJ, Wang XH, Zhao XJ, Wang FS (2003) Synthesis and properties of carbon dioxide – epoxides copolymers from rare earth metal catalyst. Macromol Symp 195:281–286CrossRef
29.
Zurück zum Zitat Quan ZL, Wang XH, Zhao XJ, Wang FS (2003) Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer 44(19):5605–5610CrossRef Quan ZL, Wang XH, Zhao XJ, Wang FS (2003) Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer 44(19):5605–5610CrossRef
30.
Zurück zum Zitat Lu HW, Qin YS, Wang XH, Yang XG, Zhang SB, Wang FS (2011) Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst. J Polym Sci A 49(17):3797–3804CrossRef Lu HW, Qin YS, Wang XH, Yang XG, Zhang SB, Wang FS (2011) Copolymerization of carbon dioxide and propylene oxide under inorganic oxide supported rare earth ternary catalyst. J Polym Sci A 49(17):3797–3804CrossRef
31.
Zurück zum Zitat Aida T, Ishikawa M, Inoue S (1986) Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules 19(1):8–13CrossRef Aida T, Ishikawa M, Inoue S (1986) Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight. Macromolecules 19(1):8–13CrossRef
32.
Zurück zum Zitat Sugimoto H, Ohshima H, Inoue S (2003) Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin: the first example of polycarbonate synthesis from 1-atm carbon dioxide. J Polym Sci A 41(22):3549–3555CrossRef Sugimoto H, Ohshima H, Inoue S (2003) Alternating copolymerization of carbon dioxide and epoxide by manganese porphyrin: the first example of polycarbonate synthesis from 1-atm carbon dioxide. J Polym Sci A 41(22):3549–3555CrossRef
33.
Zurück zum Zitat Qin YS, Wang XH, Zhao XJ, Wang FS (2008) Copolymerization of carbon dioxide and cyclohexene oxide catalyzed by aluminum porphyrin-quaternary ammonium salt in the presence of bulky Lewis acid. Chin J Polym Sci 26(2):241–247CrossRef Qin YS, Wang XH, Zhao XJ, Wang FS (2008) Copolymerization of carbon dioxide and cyclohexene oxide catalyzed by aluminum porphyrin-quaternary ammonium salt in the presence of bulky Lewis acid. Chin J Polym Sci 26(2):241–247CrossRef
34.
Zurück zum Zitat Sugimoto H, Kuroda K (2008) The cobalt porphyrin – Lewis base system: a highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions. Macromolecules 41(2):312–317CrossRef Sugimoto H, Kuroda K (2008) The cobalt porphyrin – Lewis base system: a highly selective catalyst for alternating copolymerization of CO2 and epoxide under mild conditions. Macromolecules 41(2):312–317CrossRef
35.
Zurück zum Zitat Qin YS, Wang XH, Zhang SB, Zhao XJ, Wang FS (2008) Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight. J Polym Sci A 46(17):5959–5967CrossRef Qin YS, Wang XH, Zhang SB, Zhao XJ, Wang FS (2008) Fixation of carbon dioxide into aliphatic polycarbonate, cobalt porphyrin catalyzed regio-specific poly(propylene carbonate) with high molecular weight. J Polym Sci A 46(17):5959–5967CrossRef
36.
Zurück zum Zitat Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, Robertson JB, Draper JD, Reibenspies JH (1999) Catalytic activity of a series of Zn(II) Phenoxides for the copolymerization of epoxides and carbon dioxide. J Am Chem Soc 121(1):107–116CrossRef Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, Robertson JB, Draper JD, Reibenspies JH (1999) Catalytic activity of a series of Zn(II) Phenoxides for the copolymerization of epoxides and carbon dioxide. J Am Chem Soc 121(1):107–116CrossRef
37.
Zurück zum Zitat Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH (2000) Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc Phenoxides. J Am Chem Soc 122(50):12487–12496CrossRef Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH (2000) Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc Phenoxides. J Am Chem Soc 122(50):12487–12496CrossRef
38.
Zurück zum Zitat Koning C, Wildeson J, Parton R, Plum B, Steeman P, Darensbourg DJ (2001) Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide. Polymer 42(9):3995–4004CrossRef Koning C, Wildeson J, Parton R, Plum B, Steeman P, Darensbourg DJ (2001) Synthesis and physical characterization of poly(cyclohexane carbonate), synthesized from CO2 and cyclohexene oxide. Polymer 42(9):3995–4004CrossRef
39.
Zurück zum Zitat Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW (2001) Single-site beta-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity. J Am Chem Soc 123(36):8738–8749PubMedCrossRef Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW (2001) Single-site beta-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity. J Am Chem Soc 123(36):8738–8749PubMedCrossRef
40.
Zurück zum Zitat Allen SD, Moore DR, Lobkovsky EB, Coates GW (2002) High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide. J Am Chem Soc 124(48):14284–14285PubMedCrossRef Allen SD, Moore DR, Lobkovsky EB, Coates GW (2002) High-activity, single-site catalysts for the alternating copolymerization of CO2 and propylene oxide. J Am Chem Soc 124(48):14284–14285PubMedCrossRef
41.
Zurück zum Zitat Moore DR, Cheng M, Lobkovsky EB, Coates GW (2002) Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities. Angew Chem Int Ed 41(14):2599–2602CrossRef Moore DR, Cheng M, Lobkovsky EB, Coates GW (2002) Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities. Angew Chem Int Ed 41(14):2599–2602CrossRef
42.
Zurück zum Zitat Allen SD, Moore DR, Lobkovsky EB, Coates GW (2003) Structure and reactivity of mono- and dinuclear diiminate zinc alkyl complexes. J Organomet Chem 683(1):137–148CrossRef Allen SD, Moore DR, Lobkovsky EB, Coates GW (2003) Structure and reactivity of mono- and dinuclear diiminate zinc alkyl complexes. J Organomet Chem 683(1):137–148CrossRef
43.
Zurück zum Zitat Moore DR, Cheng M, Lobkovsky EB, Coates GW (2003) Mechanism of the alternating copolymerization of epoxides and CO2 using beta -diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. J Am Chem Soc 125(39):11911–11924PubMedCrossRef Moore DR, Cheng M, Lobkovsky EB, Coates GW (2003) Mechanism of the alternating copolymerization of epoxides and CO2 using beta -diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. J Am Chem Soc 125(39):11911–11924PubMedCrossRef
44.
Zurück zum Zitat Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral Salen chromium chloride catalyst. J Am Chem Soc 124(22):6335–6342PubMedCrossRef Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral Salen chromium chloride catalyst. J Am Chem Soc 124(22):6335–6342PubMedCrossRef
45.
Zurück zum Zitat Darensbourg DJ, Fang CC, Rodgers JL (2004) Catalytic coupling of carbon dioxide and 2,3-Epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (Salen)CrIIICl derivative. Organometallics 23(4):924–927CrossRef Darensbourg DJ, Fang CC, Rodgers JL (2004) Catalytic coupling of carbon dioxide and 2,3-Epoxy-1,2,3,4-tetrahydronaphthalene in the presence of a (Salen)CrIIICl derivative. Organometallics 23(4):924–927CrossRef
46.
Zurück zum Zitat Cohen CT, Coates GW (2006) Alternating copolymerization of propylene oxide and carbon dioxide with highlv efficient and selective (salen)Co(III) catalysts: effect of ligand and cocatalyst variation. J Polym Sci A 44(17):5182–5191CrossRef Cohen CT, Coates GW (2006) Alternating copolymerization of propylene oxide and carbon dioxide with highlv efficient and selective (salen)Co(III) catalysts: effect of ligand and cocatalyst variation. J Polym Sci A 44(17):5182–5191CrossRef
47.
Zurück zum Zitat Lu XB, Shi L, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B (2006) Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J Am Chem Soc 128(5):1664–1674PubMedCrossRef Lu XB, Shi L, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B (2006) Design of highly active binary catalyst systems for CO2/epoxide copolymerization: polymer selectivity, enantioselectivity, and stereochemistry control. J Am Chem Soc 128(5):1664–1674PubMedCrossRef
48.
Zurück zum Zitat Shi L, Lu XB, Zhang R, Peng XJ, Zhang CQ, Li JF, Peng XM (2006) Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 39(17):5679–5685CrossRef Shi L, Lu XB, Zhang R, Peng XJ, Zhang CQ, Li JF, Peng XM (2006) Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromolecules 39(17):5679–5685CrossRef
49.
Zurück zum Zitat Niu YS, Zhang WX, Pang X, Chen XS, Zhuang XL, Jing XB (2007) Alternating copolymerization of carbon dioxide and propylene oxide catalyzed by (R,R)-SalenCo(III)-(2,4-dinitrophenoxy) and Lewis-basic cocatalyst. J Polym Sci A 45(22):5050–5056CrossRef Niu YS, Zhang WX, Pang X, Chen XS, Zhuang XL, Jing XB (2007) Alternating copolymerization of carbon dioxide and propylene oxide catalyzed by (R,R)-SalenCo(III)-(2,4-dinitrophenoxy) and Lewis-basic cocatalyst. J Polym Sci A 45(22):5050–5056CrossRef
50.
Zurück zum Zitat Liu BY, Zhao X, Guo HF, Gao YH, Yang M, Wang XH (2009) Alternating copolymerization of carbon dioxide and propylene oxide by single-component cobalt salen complexes with various axial group. Polymer 50(21):5071–5075CrossRef Liu BY, Zhao X, Guo HF, Gao YH, Yang M, Wang XH (2009) Alternating copolymerization of carbon dioxide and propylene oxide by single-component cobalt salen complexes with various axial group. Polymer 50(21):5071–5075CrossRef
51.
Zurück zum Zitat Ren WM, Liu ZW, Wen YQ, Zhang R, Lu XB (2009) Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally S single-site cobalt(III) catalyst. J Am Chem Soc 131(32):11509–11518PubMedCrossRef Ren WM, Liu ZW, Wen YQ, Zhang R, Lu XB (2009) Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally S single-site cobalt(III) catalyst. J Am Chem Soc 131(32):11509–11518PubMedCrossRef
52.
Zurück zum Zitat Ren WM, Zhang X, Liu Y, Li JF, Wang H, Lu XB (2010) Highly active, bifunctional Co(III)-Salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and Terpolymerization with aliphatic epoxides. Macromolecules 43(3):1396–1402CrossRef Ren WM, Zhang X, Liu Y, Li JF, Wang H, Lu XB (2010) Highly active, bifunctional Co(III)-Salen catalyst for alternating copolymerization of CO2 with cyclohexene oxide and Terpolymerization with aliphatic epoxides. Macromolecules 43(3):1396–1402CrossRef
53.
Zurück zum Zitat Yoo J, Na SJ, Park HC, Cyriac A, Lee BY (2010) Anion variation on a cobalt(III) complex of salen-type ligand tethered by four quaternary ammonium salts for CO2/epoxide copolymerization. Dalton Trans 39(10):2622–2630PubMedCrossRef Yoo J, Na SJ, Park HC, Cyriac A, Lee BY (2010) Anion variation on a cobalt(III) complex of salen-type ligand tethered by four quaternary ammonium salts for CO2/epoxide copolymerization. Dalton Trans 39(10):2622–2630PubMedCrossRef
54.
Zurück zum Zitat Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev 153:155–174CrossRef Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev 153:155–174CrossRef
55.
Zurück zum Zitat Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41(4):1462–1484PubMedCrossRef Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41(4):1462–1484PubMedCrossRef
56.
Zurück zum Zitat Kobayashi M, Inoue S, Tsuruta T (1973) Copolymerization of carbon dioxide and epoxide by the dialkylzinc-carboxylic acid system. J Polym Sci B 11(9):2383–2385 Kobayashi M, Inoue S, Tsuruta T (1973) Copolymerization of carbon dioxide and epoxide by the dialkylzinc-carboxylic acid system. J Polym Sci B 11(9):2383–2385
57.
Zurück zum Zitat Inoue S, Kobayashi M, Koinuma H, Tsuruta T (1972) Reactivities of some organozinc initiators for copolymerization of carbon dioxide and propylene oxide. Makromol Chem 155(1):61–73CrossRef Inoue S, Kobayashi M, Koinuma H, Tsuruta T (1972) Reactivities of some organozinc initiators for copolymerization of carbon dioxide and propylene oxide. Makromol Chem 155(1):61–73CrossRef
58.
Zurück zum Zitat Gorecki P, Kuran W (1985) Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide: activity in copolymerization and copolymer destruction processes. J Polym Sci C 23(6):299–304 Gorecki P, Kuran W (1985) Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide: activity in copolymerization and copolymer destruction processes. J Polym Sci C 23(6):299–304
59.
Zurück zum Zitat Soga K, Imai E, Hattori I (1981) Alternating polymerization of carbon dioxide and propylene oxide with the catalysts prepared from hydroxide and various dicarboxylic acids. Polym J 13:407–410CrossRef Soga K, Imai E, Hattori I (1981) Alternating polymerization of carbon dioxide and propylene oxide with the catalysts prepared from hydroxide and various dicarboxylic acids. Polym J 13:407–410CrossRef
60.
Zurück zum Zitat Ree M, Bae JY, Jung JH, Shin TJ (1999) A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J Polym Sci A 37(12):1863–1876CrossRef Ree M, Bae JY, Jung JH, Shin TJ (1999) A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J Polym Sci A 37(12):1863–1876CrossRef
61.
Zurück zum Zitat Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS (2002) Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J Polym Sci A 40(21):3579–3591CrossRef Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS (2002) Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J Polym Sci A 40(21):3579–3591CrossRef
62.
Zurück zum Zitat Sakharov AM, Il’in VV, Rusak VV, Nysenko ZN, Klimov SA (2002) Copolymerization of propylene oxide with carbon dioxide catalyzed by zinc adipate. Russ Chem Bull 51(8):1451–1454CrossRef Sakharov AM, Il’in VV, Rusak VV, Nysenko ZN, Klimov SA (2002) Copolymerization of propylene oxide with carbon dioxide catalyzed by zinc adipate. Russ Chem Bull 51(8):1451–1454CrossRef
63.
Zurück zum Zitat Kim JS, Ree M, Lee SW, Oh W, Baek S, Lee B, Shin TJ, Kim KJ, Kim B, Luning J (2003) NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide. J Catal 218(2):386–395CrossRef Kim JS, Ree M, Lee SW, Oh W, Baek S, Lee B, Shin TJ, Kim KJ, Kim B, Luning J (2003) NEXAFS spectroscopy study of the surface properties of zinc glutarate and its reactivity with carbon dioxide and propylene oxide. J Catal 218(2):386–395CrossRef
64.
Zurück zum Zitat Kim JS, Ree M, Shin TJ, Han OH, Cho SJ, Hwang YT, Bae JY, Lee JM, Ryoo R, Kim H (2003) X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. J Catal 218(1):209–219CrossRef Kim JS, Ree M, Shin TJ, Han OH, Cho SJ, Hwang YT, Bae JY, Lee JM, Ryoo R, Kim H (2003) X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. J Catal 218(1):209–219CrossRef
65.
Zurück zum Zitat Eberhardt R, Allmendinger M, Zintl M, Troll C, Luinstra GA, Rieger B (2004) New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: activity enhancement through Zn(II)-ethylsulfinate initiating groups. Macromol Chem Phys 205(1):42–47CrossRef Eberhardt R, Allmendinger M, Zintl M, Troll C, Luinstra GA, Rieger B (2004) New zinc dicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction: activity enhancement through Zn(II)-ethylsulfinate initiating groups. Macromol Chem Phys 205(1):42–47CrossRef
66.
Zurück zum Zitat Li XH, Meng YZ, Chen GQ, Li RKY (2004) Thermal properties and rheological behavior of biodegradable aliphatic polycarbonate derived from carbon dioxide and propylene oxide. J Appl Polym Sci 94(2):711–716CrossRef Li XH, Meng YZ, Chen GQ, Li RKY (2004) Thermal properties and rheological behavior of biodegradable aliphatic polycarbonate derived from carbon dioxide and propylene oxide. J Appl Polym Sci 94(2):711–716CrossRef
67.
Zurück zum Zitat Ree M, Hwang Y, Kim JS, Kim H, Kim G, Kim H (2006) New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives. Catal Today 115(1–4):134–145CrossRef Ree M, Hwang Y, Kim JS, Kim H, Kim G, Kim H (2006) New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives. Catal Today 115(1–4):134–145CrossRef
68.
Zurück zum Zitat Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) On the formation of aliphatic polycarbonates from epoxides with chromium(III) and aluminum(III) metal-salen complexes. Chem Eur J 11(21):6298–6314PubMedCrossRef Luinstra GA, Haas GR, Molnar F, Bernhart V, Eberhardt R, Rieger B (2005) On the formation of aliphatic polycarbonates from epoxides with chromium(III) and aluminum(III) metal-salen complexes. Chem Eur J 11(21):6298–6314PubMedCrossRef
69.
Zurück zum Zitat Kim JS, Kim H, Ree M (2004) Hydrothermal synthesis of single-crystalline zinc glutarate and its structural determination. Chem Mater 16(16):2981–2983CrossRef Kim JS, Kim H, Ree M (2004) Hydrothermal synthesis of single-crystalline zinc glutarate and its structural determination. Chem Mater 16(16):2981–2983CrossRef
70.
Zurück zum Zitat Darensbourg DJ, Sanchez KM, Reibenspies JH, Rheingold AL (1989) Synthesis, structure, and reactivity of Zerovalent Group-6 metal Pentacarbonyl aryl oxide complexes-reactions with carbon-dioxide. J Am Chem Soc 111(18):7094–7103CrossRef Darensbourg DJ, Sanchez KM, Reibenspies JH, Rheingold AL (1989) Synthesis, structure, and reactivity of Zerovalent Group-6 metal Pentacarbonyl aryl oxide complexes-reactions with carbon-dioxide. J Am Chem Soc 111(18):7094–7103CrossRef
71.
Zurück zum Zitat Darensbourg DJ, Mueller BL, Bischoff CJ, Chojnacki SS, Reibenspies JH (1991) Investigations into the steric influences on the reaction-mechanism of CO2 insertion into metal oxygen bonds – cos activation as a model for CO2. Inorg Chem 30(10):2418–2424CrossRef Darensbourg DJ, Mueller BL, Bischoff CJ, Chojnacki SS, Reibenspies JH (1991) Investigations into the steric influences on the reaction-mechanism of CO2 insertion into metal oxygen bonds – cos activation as a model for CO2. Inorg Chem 30(10):2418–2424CrossRef
72.
Zurück zum Zitat Chen S, Hua ZJ, Fang Z, Qi GR (2004) Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 45(19):6519–6524CrossRef Chen S, Hua ZJ, Fang Z, Qi GR (2004) Copolymerization of carbon dioxide and propylene oxide with highly effective zinc hexacyanocobaltate(III)-based coordination catalyst. Polymer 45(19):6519–6524CrossRef
73.
Zurück zum Zitat Sun XK, Zhang XH, Liu F, Chen S, Du BY, Wang Q, Fan ZQ, Qi GR (2008) Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co-III double metal cyanide complex hybrid catalysts with a nanolamellar structure. J Polym Sci A 46(9):3128–3139CrossRef Sun XK, Zhang XH, Liu F, Chen S, Du BY, Wang Q, Fan ZQ, Qi GR (2008) Alternating copolymerization of carbon dioxide and cyclohexene oxide catalyzed by silicon dioxide/Zn-Co-III double metal cyanide complex hybrid catalysts with a nanolamellar structure. J Polym Sci A 46(9):3128–3139CrossRef
74.
Zurück zum Zitat Darensbourg DJ, Adams MJ, Yarbrough JC, Phelps AL (2003) Synthesis and structural characterization of double metal cyanides of Iron and zinc: catalyst precursors for the copolymerization of carbon dioxide and epoxides. Inorg Chem 42(24):7809–7818PubMedCrossRef Darensbourg DJ, Adams MJ, Yarbrough JC, Phelps AL (2003) Synthesis and structural characterization of double metal cyanides of Iron and zinc: catalyst precursors for the copolymerization of carbon dioxide and epoxides. Inorg Chem 42(24):7809–7818PubMedCrossRef
75.
Zurück zum Zitat Chen XH, Shen ZQ, Zhang YF (1991) New catalytic-systems for the fixation of carbon-dioxide. 1. Copolymerization of CO2 and propylene oxide with new rare-Earth catalysts-Re(P204)3-Al(i-Bu)3-R(OH)n. Macromolecules 24(19):5305–5308CrossRef Chen XH, Shen ZQ, Zhang YF (1991) New catalytic-systems for the fixation of carbon-dioxide. 1. Copolymerization of CO2 and propylene oxide with new rare-Earth catalysts-Re(P204)3-Al(i-Bu)3-R(OH)n. Macromolecules 24(19):5305–5308CrossRef
76.
Zurück zum Zitat Liu BY, Zhao XJ, Wang XH, Wang FS (2003) Copolymerization of carbon dioxide and propylene oxide with neodymium trichloroacetate-based coordination catalyst. Polymer 44(6):1803–1808CrossRef Liu BY, Zhao XJ, Wang XH, Wang FS (2003) Copolymerization of carbon dioxide and propylene oxide with neodymium trichloroacetate-based coordination catalyst. Polymer 44(6):1803–1808CrossRef
77.
Zurück zum Zitat Liu BY, Zhao XJ, Wang XH, Wang FS (2001) Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: the role of rare-earth compound in the catalytic system. J Polym Sci A 39(16):2751–2754CrossRef Liu BY, Zhao XJ, Wang XH, Wang FS (2001) Copolymerization of carbon dioxide and propylene oxide with Ln(CCl3COO)3-based catalyst: the role of rare-earth compound in the catalytic system. J Polym Sci A 39(16):2751–2754CrossRef
78.
Zurück zum Zitat Tan CS, Hsu TJ (1997) Alternating copolymerization of carbon dioxide and propylene oxide with a rare-earth-metal coordination catalyst. Macromolecules 30(11):3147–3150CrossRef Tan CS, Hsu TJ (1997) Alternating copolymerization of carbon dioxide and propylene oxide with a rare-earth-metal coordination catalyst. Macromolecules 30(11):3147–3150CrossRef
79.
Zurück zum Zitat Tao YH, Wang XH, Zhao XJ, Li J, Wang F (2006) Double propagation based on diepoxide, a facile route to high molecular weight poly(propylene carbonate). Polymer 47(21):7368–7373CrossRef Tao YH, Wang XH, Zhao XJ, Li J, Wang F (2006) Double propagation based on diepoxide, a facile route to high molecular weight poly(propylene carbonate). Polymer 47(21):7368–7373CrossRef
80.
Zurück zum Zitat Takeda N, Inoue S (1978) Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Makromol Chem 179(5):1377–1381CrossRef Takeda N, Inoue S (1978) Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins. Makromol Chem 179(5):1377–1381CrossRef
81.
Zurück zum Zitat Mang S, Cooper AI, Colclough ME, Chauhan N, Holmes AB (2000) Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst. Macromolecules 33(2):303–308CrossRef Mang S, Cooper AI, Colclough ME, Chauhan N, Holmes AB (2000) Copolymerization of CO2 and 1,2-cyclohexene oxide using a CO2-soluble chromium porphyrin catalyst. Macromolecules 33(2):303–308CrossRef
82.
Zurück zum Zitat Kruper WJ, Dellar DV (1995) Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium Metalloporphyrinates. J Org Chem 60(3):725–727CrossRef Kruper WJ, Dellar DV (1995) Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium Metalloporphyrinates. J Org Chem 60(3):725–727CrossRef
83.
Zurück zum Zitat Wu W, Sheng XF, Qin YS, Qiao LJ, Miao YY, Wang XH, Wang FS (2014) Bifunctional aluminum porphyrin complex: soil tolerant catalyst for copolymerization of CO2 and propylene oxide. J Polym Sci A 52(16):2346–2355CrossRef Wu W, Sheng XF, Qin YS, Qiao LJ, Miao YY, Wang XH, Wang FS (2014) Bifunctional aluminum porphyrin complex: soil tolerant catalyst for copolymerization of CO2 and propylene oxide. J Polym Sci A 52(16):2346–2355CrossRef
84.
Zurück zum Zitat Sheng XF, Wang Y, Qin YS, Wang XH, Wang FS (2014) Aluminum porphyrin complexes via delicate ligand design: emerging efficient catalysts for high molecular weight poly(propylene carbonate). RSC Adv 4(96):54043–54050CrossRef Sheng XF, Wang Y, Qin YS, Wang XH, Wang FS (2014) Aluminum porphyrin complexes via delicate ligand design: emerging efficient catalysts for high molecular weight poly(propylene carbonate). RSC Adv 4(96):54043–54050CrossRef
85.
Zurück zum Zitat Cheng M, Lobkovsky EB, Coates GW (1998) Catalytic reactions involving C-1 feedstocks: new high activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides. J Am Chem Soc 120(42):11018–11019CrossRef Cheng M, Lobkovsky EB, Coates GW (1998) Catalytic reactions involving C-1 feedstocks: new high activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides. J Am Chem Soc 120(42):11018–11019CrossRef
86.
Zurück zum Zitat Martinez LE, Leighton JL, Carsten DH, Jacobsen EN (1995) Highly enantioselective ring-opening of epoxides catalyzed by (Salen)Cr(III) complexes. J Am Chem Soc 117(21):5897–5898CrossRef Martinez LE, Leighton JL, Carsten DH, Jacobsen EN (1995) Highly enantioselective ring-opening of epoxides catalyzed by (Salen)Cr(III) complexes. J Am Chem Soc 117(21):5897–5898CrossRef
87.
Zurück zum Zitat Jacobsen EN, Tokunaga M, Larrow JF (1999) Stereoselective ring opening reactions involve reaction of a cyclic substrate with a sub stoichiometric amount of a nucleophile in the presence of a chiral catalyst. WO200009463A1 Jacobsen EN, Tokunaga M, Larrow JF (1999) Stereoselective ring opening reactions involve reaction of a cyclic substrate with a sub stoichiometric amount of a nucleophile in the presence of a chiral catalyst. WO200009463A1
88.
Zurück zum Zitat Qin ZQ, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42(44):5484–5487CrossRef Qin ZQ, Thomas CM, Lee S, Coates GW (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42(44):5484–5487CrossRef
89.
Zurück zum Zitat Lu XB, Wang Y (2004) Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew Chem Int Ed 43(27):3574–3577CrossRef Lu XB, Wang Y (2004) Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. Angew Chem Int Ed 43(27):3574–3577CrossRef
90.
Zurück zum Zitat Nakano K, Kamada T, Nozaki K (2006) Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew Chem Int Ed 45(43):7274–7277CrossRef Nakano K, Kamada T, Nozaki K (2006) Selective formation of polycarbonate over cyclic carbonate: copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm. Angew Chem Int Ed 45(43):7274–7277CrossRef
91.
Zurück zum Zitat Noh EK, Na SJ, Sujith S, Kim SW, Lee BY (2007) Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization. J Am Chem Soc 129(26):8082–8083PubMedCrossRef Noh EK, Na SJ, Sujith S, Kim SW, Lee BY (2007) Two components in a molecule: highly efficient and thermally robust catalytic system for CO2/epoxide copolymerization. J Am Chem Soc 129(26):8082–8083PubMedCrossRef
92.
Zurück zum Zitat Sujith S, Min JK, Seong JE, Na SJ, Lee BY (2008) A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew Chem Int Ed 47(38):7306–7309CrossRef Sujith S, Min JK, Seong JE, Na SJ, Lee BY (2008) A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew Chem Int Ed 47(38):7306–7309CrossRef
93.
Zurück zum Zitat Na SJ, Sujith S, Cyriac A, Kim BE, Yoo J, Kang YK, Han SJ, Lee C, Lee BY (2009) Elucidation of the structure of a highly active catalytic system for CO2/epoxide copolymerization: a salen-Cobaltate complex of an unusual binding mode. Inorg Chem 48(21):10455–10465PubMedCrossRef Na SJ, Sujith S, Cyriac A, Kim BE, Yoo J, Kang YK, Han SJ, Lee C, Lee BY (2009) Elucidation of the structure of a highly active catalytic system for CO2/epoxide copolymerization: a salen-Cobaltate complex of an unusual binding mode. Inorg Chem 48(21):10455–10465PubMedCrossRef
94.
Zurück zum Zitat Liu BY, Gao YH, Zhao X, Yan WD, Wang XH (2010) Alternating copolymerization of carbon dioxide and propylene oxide under bifunctional cobalt Salen complexes: role of Lewis Base substituent covalent bonded on Salen ligand. J Polym Sci A 48(2):359–365CrossRef Liu BY, Gao YH, Zhao X, Yan WD, Wang XH (2010) Alternating copolymerization of carbon dioxide and propylene oxide under bifunctional cobalt Salen complexes: role of Lewis Base substituent covalent bonded on Salen ligand. J Polym Sci A 48(2):359–365CrossRef
95.
Zurück zum Zitat Hinz W, Dexheimer EM, Dexheimer E, Michael DE, Werner H (2004) Removal and reclamation of double metal cyanide catalyst from polymer polyol involves adding soluble polymeric acid to the polyol, and reacting the polymeric acid with the catalyst to form agglomeration. US2004158032A1 Hinz W, Dexheimer EM, Dexheimer E, Michael DE, Werner H (2004) Removal and reclamation of double metal cyanide catalyst from polymer polyol involves adding soluble polymeric acid to the polyol, and reacting the polymeric acid with the catalyst to form agglomeration. US2004158032A1
96.
Zurück zum Zitat Hinz W, Wildeson J, Dexheimer EM (2006) Forming polyethercarbonate polyol to produce polyurethane polymer involves reacting hydrogen-functional initiator, alkylene oxide and carbon dioxide in presence of catalyst of multimetal cyanide; and providing carbon dioxide-philic compound. WO2006103213A1 Hinz W, Wildeson J, Dexheimer EM (2006) Forming polyethercarbonate polyol to produce polyurethane polymer involves reacting hydrogen-functional initiator, alkylene oxide and carbon dioxide in presence of catalyst of multimetal cyanide; and providing carbon dioxide-philic compound. WO2006103213A1
97.
Zurück zum Zitat Hinz W, Wildeson J, Dexheimer EM, Neff R, Neff RA, Dexheimer E (2004) Formation of polyol for forming urethanes involves reacting initiator with alkylene oxide in the presence of double metal cyanide catalyst and sterically hindered chain transfer agent. US6713599B1 Hinz W, Wildeson J, Dexheimer EM, Neff R, Neff RA, Dexheimer E (2004) Formation of polyol for forming urethanes involves reacting initiator with alkylene oxide in the presence of double metal cyanide catalyst and sterically hindered chain transfer agent. US6713599B1
98.
Zurück zum Zitat Mijolovic D, Kummeter M, Stoesser M, Bauer S, Goettke S, Gtmttke S, Sttmsser M, Stosser M, Gottke S (2008) Production of polyether-carbonate-polyol for use e.g. in polyurethane manufacture, involves reacting alkylene oxide, carbon dioxide and H-functional starter, some of which is added continuously. WO2008092767A1 Mijolovic D, Kummeter M, Stoesser M, Bauer S, Goettke S, Gtmttke S, Sttmsser M, Stosser M, Gottke S (2008) Production of polyether-carbonate-polyol for use e.g. in polyurethane manufacture, involves reacting alkylene oxide, carbon dioxide and H-functional starter, some of which is added continuously. WO2008092767A1
99.
Zurück zum Zitat Haider KW, McDaniel KG, Hayes JE, Shen J. New polyether carbonate polyol produced by copolymerizing starter molecule with carbon dioxide, and alkylene oxide in the presence non-crystalline double metal cyanide catalyst, useful for producing e.g. elastomers. US2010331517A1 Haider KW, McDaniel KG, Hayes JE, Shen J. New polyether carbonate polyol produced by copolymerizing starter molecule with carbon dioxide, and alkylene oxide in the presence non-crystalline double metal cyanide catalyst, useful for producing e.g. elastomers. US2010331517A1
100.
Zurück zum Zitat Guertler C, Grasser S, Hofmann J, Wolf A, Glasl S, Glutle C. Producing polyether carbonate polyol useful in e.g. fuel additives, comprises e.g. providing a double-metal cyanide catalyst and a hydrogen-functional starter substance or a mixture made from two hydrogen-functional starter substance. WO2011089120A1 Guertler C, Grasser S, Hofmann J, Wolf A, Glasl S, Glutle C. Producing polyether carbonate polyol useful in e.g. fuel additives, comprises e.g. providing a double-metal cyanide catalyst and a hydrogen-functional starter substance or a mixture made from two hydrogen-functional starter substance. WO2011089120A1
101.
Zurück zum Zitat Guertler C, Hofmann J, Wolf A, Grasser S, Glazer S, Guertler CH, Hofmann Y. Producing polyether carbonate polyol from an alkylene oxide and carbon dioxide in presence of a double metal cyanide catalyst comprising unsaturated alcohol as a complex ligand. WO2012032028A1 Guertler C, Hofmann J, Wolf A, Grasser S, Glazer S, Guertler CH, Hofmann Y. Producing polyether carbonate polyol from an alkylene oxide and carbon dioxide in presence of a double metal cyanide catalyst comprising unsaturated alcohol as a complex ligand. WO2012032028A1
102.
Zurück zum Zitat Gao YG, Qin YS, Zhao XJ, Wang FS, Wang XH (2012) Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. J Polym Res 19(5):9878CrossRef Gao YG, Qin YS, Zhao XJ, Wang FS, Wang XH (2012) Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. J Polym Res 19(5):9878CrossRef
103.
Zurück zum Zitat Gao YG, Gu L, Qin YS, Wang XH, Wang FS (2012) Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. J Polym Sci A 50(24):5177–5184CrossRef Gao YG, Gu L, Qin YS, Wang XH, Wang FS (2012) Dicarboxylic acid promoted immortal copolymerization for controllable synthesis of low-molecular weight oligo(carbonate-ether) diols with tunable carbonate unit content. J Polym Sci A 50(24):5177–5184CrossRef
104.
Zurück zum Zitat Liu SJ, Qin YS, Chen XS, Wang XH, Wang FS (2014) One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polym Chem 5(21):6171–6179CrossRef Liu SJ, Qin YS, Chen XS, Wang XH, Wang FS (2014) One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiation-transfer agent. Polym Chem 5(21):6171–6179CrossRef
105.
Zurück zum Zitat Liu SJ, Miao YY, Qiao LJ, Qin YS, Wang XH, Chen XS, Wang FS (2015) Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol. Polym Chem 6(43):7580–7585CrossRef Liu SJ, Miao YY, Qiao LJ, Qin YS, Wang XH, Chen XS, Wang FS (2015) Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol. Polym Chem 6(43):7580–7585CrossRef
106.
Zurück zum Zitat Liu SJ, Qin YS, Qiao LJ, Miao YY, Wang XH, Wang FS (2016) Cheap and fast: oxalic acid initiated CO2-based polyols synthesized by a novel preactivation approach. Polym Chem 7(1):146–152CrossRef Liu SJ, Qin YS, Qiao LJ, Miao YY, Wang XH, Wang FS (2016) Cheap and fast: oxalic acid initiated CO2-based polyols synthesized by a novel preactivation approach. Polym Chem 7(1):146–152CrossRef
107.
Zurück zum Zitat Allen SD, Cherian AE, Coates GW, Farmer JJ, Gridnev AA, Simoneau CA. Polymerization system, useful e.g. for copolymerization of carbon dioxide and epoxides, comprises a metal complex including a permanent ligand set and a ligand that is a polymerization initiator, and a chain transfer agent. WO2010028362A1 Allen SD, Cherian AE, Coates GW, Farmer JJ, Gridnev AA, Simoneau CA. Polymerization system, useful e.g. for copolymerization of carbon dioxide and epoxides, comprises a metal complex including a permanent ligand set and a ligand that is a polymerization initiator, and a chain transfer agent. WO2010028362A1
108.
Zurück zum Zitat Cyriac A, Lee SH, Varghese JK, Park ES, Park JH, Lee BY (2010) Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. Macromolecules 43(18):7398–7401CrossRef Cyriac A, Lee SH, Varghese JK, Park ES, Park JH, Lee BY (2010) Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. Macromolecules 43(18):7398–7401CrossRef
109.
Zurück zum Zitat Cyriac A, Lee SH, Varghese JK, Park JH, Jeon JY, Kim SJ, Lee BY (2011) Preparation of flame-retarding poly(propylene carbonate). Green Chem 13(12):3469–3475CrossRef Cyriac A, Lee SH, Varghese JK, Park JH, Jeon JY, Kim SJ, Lee BY (2011) Preparation of flame-retarding poly(propylene carbonate). Green Chem 13(12):3469–3475CrossRef
110.
Zurück zum Zitat Varghese JK, Cyriac A, Lee BY (2012) Incorporation of ether linkage in CO2/propylene oxide copolymerization by dual catalysis. Polyhedron 32(1):90–95CrossRef Varghese JK, Cyriac A, Lee BY (2012) Incorporation of ether linkage in CO2/propylene oxide copolymerization by dual catalysis. Polyhedron 32(1):90–95CrossRef
111.
Zurück zum Zitat Tao YH, Wang XH, Zhao XJ, Li J, Wang FS (2006) Crosslinkable poly(propylene carbonate): high-yield synthesis and performance improvement. J Polym Sci A 44(18):5329–5336CrossRef Tao YH, Wang XH, Zhao XJ, Li J, Wang FS (2006) Crosslinkable poly(propylene carbonate): high-yield synthesis and performance improvement. J Polym Sci A 44(18):5329–5336CrossRef
112.
Zurück zum Zitat Jeon JY, Eo SC, Varghese JK, Lee BY (2014) Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts. Beilstein J Org Chem 10:1787–1795PubMedPubMedCentralCrossRef Jeon JY, Eo SC, Varghese JK, Lee BY (2014) Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts. Beilstein J Org Chem 10:1787–1795PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Lu LB, Huang KL (2005) Synthesis and characteristics of a novel aliphatic polycarbonate, poly[(propylene oxide)-co-(carbon dioxide)-co-(γ -butyrolactone)]. Polym Int 54:870–874CrossRef Lu LB, Huang KL (2005) Synthesis and characteristics of a novel aliphatic polycarbonate, poly[(propylene oxide)-co-(carbon dioxide)-co-(γ -butyrolactone)]. Polym Int 54:870–874CrossRef
114.
Zurück zum Zitat Darensbourg DJ, Zimmer MS (1999) Copolymerization and Terpolymerization of CO2 and epoxides using a soluble zinc Crotonate catalyst precursor. Macromolecules 32(7):2137–2140CrossRef Darensbourg DJ, Zimmer MS (1999) Copolymerization and Terpolymerization of CO2 and epoxides using a soluble zinc Crotonate catalyst precursor. Macromolecules 32(7):2137–2140CrossRef
115.
Zurück zum Zitat Hsu TJ, Tan CS (2002) Block copolymerization of carbon dioxide with cyclohexene oxide and 4-vinyl-1-cyclohexene-1,2-epoxide in based poly(propylene carbonate) by yttrium-metal coordination catalyst. Polymer 43(16):4535–4543CrossRef Hsu TJ, Tan CS (2002) Block copolymerization of carbon dioxide with cyclohexene oxide and 4-vinyl-1-cyclohexene-1,2-epoxide in based poly(propylene carbonate) by yttrium-metal coordination catalyst. Polymer 43(16):4535–4543CrossRef
116.
Zurück zum Zitat Xie D, Quan ZL, Wang XH, Zhao XJ, Wang FS (2005) Terpolymerization of carbon dioxide, propylene oxide and cyclohexene oxide catalyzed by rare-earth ternary catalyst. Chem J Chinese Univ Chinese 26(12):2360–2362 Xie D, Quan ZL, Wang XH, Zhao XJ, Wang FS (2005) Terpolymerization of carbon dioxide, propylene oxide and cyclohexene oxide catalyzed by rare-earth ternary catalyst. Chem J Chinese Univ Chinese 26(12):2360–2362
117.
Zurück zum Zitat Liu BH, Chen LB, Zhang M, Yu AF (2002) Degradation and stabilization of poly(propylene carbonate). Macromol Rapid Commun 23(15):881–884CrossRef Liu BH, Chen LB, Zhang M, Yu AF (2002) Degradation and stabilization of poly(propylene carbonate). Macromol Rapid Commun 23(15):881–884CrossRef
118.
Zurück zum Zitat Zhou M, Takayanagi M, Yoshida Y, Ishii S, Noguchi H (1999) Enzyme-catalyzed degradation of aliphatic polycarbonates prepared from epoxides and carbon dioxide. Polym Bull 42(4):419–424CrossRef Zhou M, Takayanagi M, Yoshida Y, Ishii S, Noguchi H (1999) Enzyme-catalyzed degradation of aliphatic polycarbonates prepared from epoxides and carbon dioxide. Polym Bull 42(4):419–424CrossRef
119.
Zurück zum Zitat Inoue S, Tsuruta T (1975) Synthesis and thermal degradation of carbon dioxide-epoxide copolymer. Appl Polym Symp 26:257–267 Inoue S, Tsuruta T (1975) Synthesis and thermal degradation of carbon dioxide-epoxide copolymer. Appl Polym Symp 26:257–267
120.
Zurück zum Zitat Du LC, Meng YZ, Wang SJ, Tjong SC (2004) Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. J Appl Polym Sci 92(3):1840–1846CrossRef Du LC, Meng YZ, Wang SJ, Tjong SC (2004) Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. J Appl Polym Sci 92(3):1840–1846CrossRef
121.
Zurück zum Zitat Luinstra G, Borchardt E (2012) Material properties of poly(propylene carbonates) synthetic biodegradable polymers. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Advances in polymer science, vol 245. Springer, Berlin/Heidelberg, pp 29–48 Luinstra G, Borchardt E (2012) Material properties of poly(propylene carbonates) synthetic biodegradable polymers. In: Rieger B, Künkel A, Coates GW, Reichardt R, Dinjus E, Zevaco TA (eds) Advances in polymer science, vol 245. Springer, Berlin/Heidelberg, pp 29–48
122.
Zurück zum Zitat Zhou QH, Wang XH, Gao FX, Lu HM, Zhao XJ, Wang FS (2008) Biodegradable film is manufactured by mixing polycarbonate propylene diester, completely biodegradable polyester, plasticizer and inorganic filler. CN101402789 Zhou QH, Wang XH, Gao FX, Lu HM, Zhao XJ, Wang FS (2008) Biodegradable film is manufactured by mixing polycarbonate propylene diester, completely biodegradable polyester, plasticizer and inorganic filler. CN101402789
123.
Zurück zum Zitat Gao FX, Qiao LJ, Zhou QH, Qin YS, Wang XH, Dong LS (2013) Carbon dioxide-epoxypropane copolymer foamed plastic comprises carbon dioxide-propylene oxide copolymer, toughening agent, cross-linking agent, and foaming agent. CN103304977A Gao FX, Qiao LJ, Zhou QH, Qin YS, Wang XH, Dong LS (2013) Carbon dioxide-epoxypropane copolymer foamed plastic comprises carbon dioxide-propylene oxide copolymer, toughening agent, cross-linking agent, and foaming agent. CN103304977A
124.
Zurück zum Zitat Nagiah N, Sivagnanam UT, Mohan R, Srinivasan NT, Sehgal PK (2012) Development and characterization of Electropsun poly(propylene carbonate) ultrathin fibers as tissue engineering scaffolds. Adv Eng Mater 14(4):B138–B148CrossRef Nagiah N, Sivagnanam UT, Mohan R, Srinivasan NT, Sehgal PK (2012) Development and characterization of Electropsun poly(propylene carbonate) ultrathin fibers as tissue engineering scaffolds. Adv Eng Mater 14(4):B138–B148CrossRef
125.
Zurück zum Zitat Von der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem 16(6):3272–3280CrossRef Von der Assen N, Bardow A (2014) Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem 16(6):3272–3280CrossRef
126.
Zurück zum Zitat Langanke J, Wolf A, Hofmann J, Boehm K, Subhani MA, Mueller TE, Leitner W, Guertler C (2014) Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem 16(4):1865–1870CrossRef Langanke J, Wolf A, Hofmann J, Boehm K, Subhani MA, Mueller TE, Leitner W, Guertler C (2014) Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem 16(4):1865–1870CrossRef
127.
Zurück zum Zitat Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH, Wang FS (2016) UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance. Polymer 100:219–226CrossRef Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH, Wang FS (2016) UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance. Polymer 100:219–226CrossRef
128.
Zurück zum Zitat Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH, Wang FS (2016) Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem 18(2):524–530CrossRef Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH, Wang FS (2016) Waterborne polyurethanes from CO2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem 18(2):524–530CrossRef
129.
Zurück zum Zitat Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH (2017) A whole-procedure solvent-free route to CO2 based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chem 19(9):2194–2200CrossRef Wang J, Zhang HM, Miao YY, Qiao LJ, Wang XH (2017) A whole-procedure solvent-free route to CO2 based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chem 19(9):2194–2200CrossRef
130.
Zurück zum Zitat Alagi P, Ghorpade R, Choi YJ, Patil U, Kim I, Baik JH, Hong SC (2017) Carbon dioxide based polyols as sustainable feedstock of thermoplastic polyurethane for corrosion-resistant metal coating. ACS Sustain Chem Eng 5(5):3871–3881CrossRef Alagi P, Ghorpade R, Choi YJ, Patil U, Kim I, Baik JH, Hong SC (2017) Carbon dioxide based polyols as sustainable feedstock of thermoplastic polyurethane for corrosion-resistant metal coating. ACS Sustain Chem Eng 5(5):3871–3881CrossRef
Metadaten
Titel
Conversion of CO2 into Polymers
verfasst von
Yusheng Qin
Xianhong Wang
Copyright-Jahr
2019
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-9060-3_1013