Skip to main content

2017 | OriginalPaper | Buchkapitel

Conversion of CO2 to Value Added Chemicals: Opportunities and Challenges

verfasst von : Arun S. Agarwal, Edward Rode, Narasi Sridhar, Davion Hill

Erschienen in: Handbook of Climate Change Mitigation and Adaptation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The world is likely to emit almost 40 Gt/year of CO2 into the atmosphere. Even if only a small fraction of the globally emitted CO2 is captured, there will be a large quantity of CO2 available to society for use in a variety of ways. Thus, CO2 should not be regarded as a waste product, but as an asset that, with human ingenuity, could be used in a sustainable way. Since sustainability is at the intersection of environmental, economic, and intergenerational stewardship, the selection of a CO2 utilization process must offer net CO2 and waste reductions compared to conventional methods of producing the same end product, must be economical, and must not leave any additional problems for future society to solve. The criteria for selection may involve a variety of local considerations, such as government incentives, the availability of suitable renewable energy source, availability of water and other chemicals, land use, local demand for a specific product, etc. Therefore, CO2 utilization is a locally sustainable solution, rather than a one-size-fits-all approach. Utilization of CO2 may involve mostly physical processes, such as in enhanced oil recovery (EOR), solvent use, and beverage industry, where the CO2 is essentially retained in its original valence state, or chemical processes, where its valence state undergoes a change (Fig. 1). We will focus in this chapter on chemical conversion, which broadly includes thermochemical and electrochemical processes. The critical technology development parameters as well as the barriers for adoption of utilization technologies are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agarwal AS, Zhai YM, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310CrossRef Agarwal AS, Zhai YM, Hill D, Sridhar N (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. ChemSusChem 4:1301–1310CrossRef
Zurück zum Zitat Akahori Y, Iwanaga N et al (2004) New electrochemical process for CO2 reduction to from formic acid from combustion flue gases. Electrochemistry 72(4):266–270 Akahori Y, Iwanaga N et al (2004) New electrochemical process for CO2 reduction to from formic acid from combustion flue gases. Electrochemistry 72(4):266–270
Zurück zum Zitat Anawati NS, Frankel GS, Agarwal A, Sridhar N (2014) Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential. Electrochim Acta 133(1):188–196CrossRef Anawati NS, Frankel GS, Agarwal A, Sridhar N (2014) Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential. Electrochim Acta 133(1):188–196CrossRef
Zurück zum Zitat Aydin R, Koleli F (2004) Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol. Synth Met 144:75–80CrossRef Aydin R, Koleli F (2004) Electrocatalytic conversion of CO2 on a polypyrrole electrode under high pressure in methanol. Synth Met 144:75–80CrossRef
Zurück zum Zitat Barton EE, Rampulla DM et al (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRef Barton EE, Rampulla DM et al (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130:6342–6344CrossRef
Zurück zum Zitat Belyaev V, Galvita V, Sobyanin V (1998) Effect of anodic current on carbon dioxide reforming of methane on pt electrode in a cell with solid oxide electrolyte. React Kinet Catal Lett 63:341CrossRef Belyaev V, Galvita V, Sobyanin V (1998) Effect of anodic current on carbon dioxide reforming of methane on pt electrode in a cell with solid oxide electrolyte. React Kinet Catal Lett 63:341CrossRef
Zurück zum Zitat Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem Solid-State Lett 11(9):B167–B170CrossRef Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem Solid-State Lett 11(9):B167–B170CrossRef
Zurück zum Zitat Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205CrossRef Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205CrossRef
Zurück zum Zitat Chaplin RPS, Wragg AA (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33(12):1107–1123CrossRef Chaplin RPS, Wragg AA (2003) Effects of process conditions and electrode material on reaction pathways for carbon dioxide electroreduction with particular reference to formate formation. J Appl Electrochem 33(12):1107–1123CrossRef
Zurück zum Zitat Chen YH, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989CrossRef Chen YH, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134:1986–1989CrossRef
Zurück zum Zitat Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134:19969–19972CrossRef Chen Y, Li CW, Kanan MW (2012) Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134:19969–19972CrossRef
Zurück zum Zitat Chiacchiarelli L, Zhai Y, Frankel G, Agarwal AS, Sridhar N (2012) Cathodic degradation mechanisms of pure Sn electrocatalyst in a nitrogen atmosphere. J Appl Electrochem 42(1):21–29CrossRef Chiacchiarelli L, Zhai Y, Frankel G, Agarwal AS, Sridhar N (2012) Cathodic degradation mechanisms of pure Sn electrocatalyst in a nitrogen atmosphere. J Appl Electrochem 42(1):21–29CrossRef
Zurück zum Zitat Choudhary V, Rajput A, Prabhakar B (1995) Energy efficient methane-to-syngas conversion with low H2/CO ratio by simultaneous catalytic reactions of methane with carbon dioxide and oxygen. Catal Lett 32:391CrossRef Choudhary V, Rajput A, Prabhakar B (1995) Energy efficient methane-to-syngas conversion with low H2/CO ratio by simultaneous catalytic reactions of methane with carbon dioxide and oxygen. Catal Lett 32:391CrossRef
Zurück zum Zitat Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRef Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551CrossRef
Zurück zum Zitat Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO + H-2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155:B42–B49CrossRef Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO + H-2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155:B42–B49CrossRef
Zurück zum Zitat Doi R, Ichikawa S et al (1995) Japanese Patent 08296077, Japan Doi R, Ichikawa S et al (1995) Japanese Patent 08296077, Japan
Zurück zum Zitat Edwards JH, Maitra A (1995) The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process Technol 42:269–289CrossRef Edwards JH, Maitra A (1995) The chemistry of methane reforming with carbon dioxide and its current and potential applications. Fuel Process Technol 42:269–289CrossRef
Zurück zum Zitat Furukawa S, Okada M, Suzuki Y (1999) Isolation of oxygen formed during catalytic reduction of carbon dioxide using a solid electrolyte membrane. Energy Fuel 13:1074CrossRef Furukawa S, Okada M, Suzuki Y (1999) Isolation of oxygen formed during catalytic reduction of carbon dioxide using a solid electrolyte membrane. Energy Fuel 13:1074CrossRef
Zurück zum Zitat Furuya N, Yamazaki T, Shibata M (1997) High performance Ru–Pd catalysts for CO2 reduction at gas-diffusion electrodes. J Electroanal Chem 431:39–41CrossRef Furuya N, Yamazaki T, Shibata M (1997) High performance Ru–Pd catalysts for CO2 reduction at gas-diffusion electrodes. J Electroanal Chem 431:39–41CrossRef
Zurück zum Zitat Gattrell M, Gupta N et al (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19CrossRef Gattrell M, Gupta N et al (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19CrossRef
Zurück zum Zitat Gattrell M, Gupta N et al (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48(4):1255–1265CrossRef Gattrell M, Gupta N et al (2007) Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers Manag 48(4):1255–1265CrossRef
Zurück zum Zitat Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah G (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43:7957–8194CrossRef Goeppert A, Czaun M, Jones J-P, Surya Prakash GK, Olah G (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43:7957–8194CrossRef
Zurück zum Zitat Grigoriev SA, Porembsky VI et al (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energ 31(2):171–175CrossRef Grigoriev SA, Porembsky VI et al (2006) Pure hydrogen production by PEM electrolysis for hydrogen energy. Int J Hydrogen Energ 31(2):171–175CrossRef
Zurück zum Zitat Gupta N, Gattrell M et al (2006) Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36(2):161–172CrossRef Gupta N, Gattrell M et al (2006) Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J Appl Electrochem 36(2):161–172CrossRef
Zurück zum Zitat Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation science and technology. Lewis Publishers, Boca Raton Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation science and technology. Lewis Publishers, Boca Raton
Zurück zum Zitat Hara K, Sakata T (1997) Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J Electrochem Soc 144(2):539–545CrossRef Hara K, Sakata T (1997) Electrocatalytic formation of CH4 from CO2 on a Pt gas diffusion electrode. J Electrochem Soc 144(2):539–545CrossRef
Zurück zum Zitat Hara K, Tsuneto A et al (1994) Electrochemical reduction of CO2 on a cu electrode under high-pressure – factors that determine the product selectivity. J Electrochem Soc 141(8):2097–2103CrossRef Hara K, Tsuneto A et al (1994) Electrochemical reduction of CO2 on a cu electrode under high-pressure – factors that determine the product selectivity. J Electrochem Soc 141(8):2097–2103CrossRef
Zurück zum Zitat Hinogami R, Yotsuhashi S, Deguchi M, Zenitani Y, Hashiba H, Yamada Y (2012) Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem Lett 1:H17–H19CrossRef Hinogami R, Yotsuhashi S, Deguchi M, Zenitani Y, Hashiba H, Yamada Y (2012) Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem Lett 1:H17–H19CrossRef
Zurück zum Zitat Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc Faraday Trans 1 85:2309–2326CrossRef Hori Y, Murata A, Takahashi R (1989) Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc Faraday Trans 1 85:2309–2326CrossRef
Zurück zum Zitat Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal–electrodes in aqueous-media. Electrochim Acta 39:1833–1839CrossRef Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal–electrodes in aqueous-media. Electrochim Acta 39:1833–1839CrossRef
Zurück zum Zitat Hori Y, Takahashi R et al (1997) Electrochemical reduction of CO at a copper electrode. J Phys Chem B 101(36):7075–7081CrossRef Hori Y, Takahashi R et al (1997) Electrochemical reduction of CO at a copper electrode. J Phys Chem B 101(36):7075–7081CrossRef
Zurück zum Zitat Hori Y, Ito H et al (2003) Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta 48(18):2651–2657CrossRef Hori Y, Ito H et al (2003) Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide. Electrochim Acta 48(18):2651–2657CrossRef
Zurück zum Zitat Hori Y, Konishi H et al (2005) “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim Acta 50(27):5354–5369CrossRef Hori Y, Konishi H et al (2005) “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim Acta 50(27):5354–5369CrossRef
Zurück zum Zitat Hu B, Guild C, Sui S, Suib S (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value added products. J CO2 Util 1:18–27CrossRef Hu B, Guild C, Sui S, Suib S (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value added products. J CO2 Util 1:18–27CrossRef
Zurück zum Zitat Huang T, Chou C (2009) Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF–GDC cathode. Electrochem Commun 11:1464CrossRef Huang T, Chou C (2009) Electrochemical CO2 reduction with power generation in SOFCs with Cu-added LSCF–GDC cathode. Electrochem Commun 11:1464CrossRef
Zurück zum Zitat Ichikawa S, Doi R (1996) Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. Catal Today 27(1–2):271–277CrossRef Ichikawa S, Doi R (1996) Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis. Catal Today 27(1–2):271–277CrossRef
Zurück zum Zitat Ikeda S, Takagi T, Ito K (1987) Selective formation of formic-acid, oxalic-acid, and carbon-monoxide by electrochemical reduction of carbon-dioxide. Chem Soc Jpn B 60:2517–2522CrossRef Ikeda S, Takagi T, Ito K (1987) Selective formation of formic-acid, oxalic-acid, and carbon-monoxide by electrochemical reduction of carbon-dioxide. Chem Soc Jpn B 60:2517–2522CrossRef
Zurück zum Zitat Ishimaru S, Shiratsuchi R et al (2000) Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes. J Electrochem Soc 147(5):1864–1867CrossRef Ishimaru S, Shiratsuchi R et al (2000) Pulsed electroreduction of CO2 on Cu-Ag alloy electrodes. J Electrochem Soc 147(5):1864–1867CrossRef
Zurück zum Zitat Jhong HR, Brushett FR, Kenis PJA (2013a) The effects of catalyst layer deposition methodology on electrode performance. Adv Energy Mater 3(5):589–599CrossRef Jhong HR, Brushett FR, Kenis PJA (2013a) The effects of catalyst layer deposition methodology on electrode performance. Adv Energy Mater 3(5):589–599CrossRef
Zurück zum Zitat Jhong H-RM, Ma S, Kenis PJA (2013b) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199 Jhong H-RM, Ma S, Kenis PJA (2013b) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199
Zurück zum Zitat Jitaru M, Lowy DA et al (1997a) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889CrossRef Jitaru M, Lowy DA et al (1997a) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889CrossRef
Zurück zum Zitat Jitaru M, Lowy DA et al (1997b) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889CrossRef Jitaru M, Lowy DA et al (1997b) Electrochemical reduction of carbon dioxide on flat metallic cathodes. J Appl Electrochem 27(8):875–889CrossRef
Zurück zum Zitat Kaneco S, Iiba K et al (2002) High efficiency electrochemical CO2-to-methane conversion method using methanol with lithium supporting electrolytes. Ind Eng Chem Res 41(21):5165–5170CrossRef Kaneco S, Iiba K et al (2002) High efficiency electrochemical CO2-to-methane conversion method using methanol with lithium supporting electrolytes. Ind Eng Chem Res 41(21):5165–5170CrossRef
Zurück zum Zitat Kaneco S, Katsumata H et al (2006a) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B-Environ 64(1-2):139–145CrossRef Kaneco S, Katsumata H et al (2006a) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B-Environ 64(1-2):139–145CrossRef
Zurück zum Zitat Kaneco S, Katsumata H et al (2006b) Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chem Eng J 116(3):227–231CrossRef Kaneco S, Katsumata H et al (2006b) Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chem Eng J 116(3):227–231CrossRef
Zurück zum Zitat Kaneco S, Iiba K et al (2007) Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt. Chem Eng J 128(1):47–50CrossRef Kaneco S, Iiba K et al (2007) Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt. Chem Eng J 128(1):47–50CrossRef
Zurück zum Zitat Kim T, Moon S, Hong S (2002) Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell. Appl Catal A 224:111CrossRef Kim T, Moon S, Hong S (2002) Internal carbon dioxide reforming by methane over Ni-YSZ-CeO2 catalyst electrode in electrochemical cell. Appl Catal A 224:111CrossRef
Zurück zum Zitat Kitamura N, Tazuke S (1983) Photoreduction of carbon dioxide to formic acid mediated by a methylviologen electron relay. Chem Lett 12:1109CrossRef Kitamura N, Tazuke S (1983) Photoreduction of carbon dioxide to formic acid mediated by a methylviologen electron relay. Chem Lett 12:1109CrossRef
Zurück zum Zitat Koleli F, Atilan T et al (2003) Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media. J Appl Electrochem 33(5):447–450CrossRef Koleli F, Atilan T et al (2003) Electrochemical reduction of CO2 at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous K2CO3 and KHCO3 media. J Appl Electrochem 33(5):447–450CrossRef
Zurück zum Zitat Koleli F, Ropke T, Hamann CH (2004) The reduction of CO2 on polyaniline electrode in a membrane cell. Synth Met 140:65–68CrossRef Koleli F, Ropke T, Hamann CH (2004) The reduction of CO2 on polyaniline electrode in a membrane cell. Synth Met 140:65–68CrossRef
Zurück zum Zitat Kostecki R, Augustynski J (1994) Electrochemical reduction of CO2 at an activated silver electrode. Ber Bunsen Phys Chem 98(12):1510–1515CrossRef Kostecki R, Augustynski J (1994) Electrochemical reduction of CO2 at an activated silver electrode. Ber Bunsen Phys Chem 98(12):1510–1515CrossRef
Zurück zum Zitat Kubisztal J, Budniok A (2008) Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media. Int J Hydrogen Energ 33(17):4488–4494CrossRef Kubisztal J, Budniok A (2008) Study of the oxygen evolution reaction on nickel-based composite coatings in alkaline media. Int J Hydrogen Energ 33(17):4488–4494CrossRef
Zurück zum Zitat Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRef Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRef
Zurück zum Zitat Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819. doi:10.1038/ncomms3819 Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Khojin A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819. doi:10.1038/ncomms3819
Zurück zum Zitat Labou D, Slavcheva E et al (2008) Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode. J Power Sources 185:1073–1078CrossRef Labou D, Slavcheva E et al (2008) Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode. J Power Sources 185:1073–1078CrossRef
Zurück zum Zitat Lee J, Tak Y (2001) Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim Acta 46(19):3015–3022CrossRef Lee J, Tak Y (2001) Electrocatalytic activity of Cu electrode in electroreduction of CO2. Electrochim Acta 46(19):3015–3022CrossRef
Zurück zum Zitat Lehn J, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701CrossRef Lehn J, Ziessel R (1982) Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proc Natl Acad Sci U S A 79:701CrossRef
Zurück zum Zitat Lehn J, Ziessel R (1990) Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t´-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes. J Organomet Chem 382:157 Lehn J, Ziessel R (1990) Photochemical reduction of carbon dioxide to formate catalyzed by 2,2t´-bipyridine- or 1,10-phenanthroline-ruthenium(II) complexes. J Organomet Chem 382:157
Zurück zum Zitat Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234CrossRef Li CW, Kanan MW (2012) CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc 134:7231–7234CrossRef
Zurück zum Zitat Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: scale-up. J Appl Electrochem 37(10):1107–1117CrossRef Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate – Part 2: scale-up. J Appl Electrochem 37(10):1107–1117CrossRef
Zurück zum Zitat Li JW, Prentice G (1997) Electrochemical synthesis of methanol from CO2 in high-pressure electrolyte. J Electrochem Soc 144:4284–4288CrossRef Li JW, Prentice G (1997) Electrochemical synthesis of methanol from CO2 in high-pressure electrolyte. J Electrochem Soc 144:4284–4288CrossRef
Zurück zum Zitat Logan DA (1997) Estimating physical properties for control equipment design. Environ Prog 16:237–244CrossRef Logan DA (1997) Estimating physical properties for control equipment design. Environ Prog 16:237–244CrossRef
Zurück zum Zitat Magdesieva TV, Zhukov IV, Kravchuk DN, Semenikhin OA, Tomilova LG, Butin KP (2002) Electrocatalytic CO2 reduction in methanol catalyzed by mono-, di-, and electropolymerized phthalocyanine complexes. Russ Chem Bull 51:805–812CrossRef Magdesieva TV, Zhukov IV, Kravchuk DN, Semenikhin OA, Tomilova LG, Butin KP (2002) Electrocatalytic CO2 reduction in methanol catalyzed by mono-, di-, and electropolymerized phthalocyanine complexes. Russ Chem Bull 51:805–812CrossRef
Zurück zum Zitat Mahmood MN, Masheder D et al (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon-dioxide. 1. Reduction at lead, indium-impregnated and tin-impregnated electrodes. J Appl Electrochem 17(6):1159–1170CrossRef Mahmood MN, Masheder D et al (1987) Use of gas-diffusion electrodes for high-rate electrochemical reduction of carbon-dioxide. 1. Reduction at lead, indium-impregnated and tin-impregnated electrodes. J Appl Electrochem 17(6):1159–1170CrossRef
Zurück zum Zitat Mao X, Alan Hatton T (2015) Recent advances in electrocatalytic reduction of carbon dioxide using metal-free catalysts. Ind Eng Chem Res 54:4033–4042CrossRef Mao X, Alan Hatton T (2015) Recent advances in electrocatalytic reduction of carbon dioxide using metal-free catalysts. Ind Eng Chem Res 54:4033–4042CrossRef
Zurück zum Zitat Moats MS, Miller JD, Zmierczak WW (2008) Chemical utilization of sequestered carbon dioxide as a booster of hydrogen economy. In: Neelameggham N, Reddy RG (eds) Carbon dioxide reduction metallurgy. The Minerals, Metals, and Materials Society, Warrendale, pp 19–23 Moats MS, Miller JD, Zmierczak WW (2008) Chemical utilization of sequestered carbon dioxide as a booster of hydrogen economy. In: Neelameggham N, Reddy RG (eds) Carbon dioxide reduction metallurgy. The Minerals, Metals, and Materials Society, Warrendale, pp 19–23
Zurück zum Zitat Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium- catalyzed CO2 reduction. ChemSusChem 4:191–196CrossRef Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium- catalyzed CO2 reduction. ChemSusChem 4:191–196CrossRef
Zurück zum Zitat Murata A, Hori Y (1991) Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull Chem Soc Jpn 64:123–127CrossRef Murata A, Hori Y (1991) Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull Chem Soc Jpn 64:123–127CrossRef
Zurück zum Zitat Ogura K (2003) Electrochemical and selective conversion of CO2 to ethylene. Electrochemistry 71(8):676–680 Ogura K (2003) Electrochemical and selective conversion of CO2 to ethylene. Electrochemistry 71(8):676–680
Zurück zum Zitat Ogura K, Yano H et al (2003) Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150(9):D163–D168CrossRef Ogura K, Yano H et al (2003) Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface. J Electrochem Soc 150(9):D163–D168CrossRef
Zurück zum Zitat Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles
Zurück zum Zitat Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498CrossRef Olah GA, Goeppert A, Prakash GKS (2009) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498CrossRef
Zurück zum Zitat Olah GA, Surya Prakash GK, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133:12881–12898CrossRef Olah GA, Surya Prakash GK, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133:12881–12898CrossRef
Zurück zum Zitat Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1(5):385–391CrossRef Oloman C, Li H (2008) Electrochemical processing of carbon dioxide. ChemSusChem 1(5):385–391CrossRef
Zurück zum Zitat Parkinson G (2006) Chem Eng Prog 102:7 Parkinson G (2006) Chem Eng Prog 102:7
Zurück zum Zitat Perathoner S, Gangeri M et al (2007) Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion. Kinetics Catal 48(6):877–883CrossRef Perathoner S, Gangeri M et al (2007) Nanostructured electrocatalytic Pt-carbon materials for fuel cells and CO2 conversion. Kinetics Catal 48(6):877–883CrossRef
Zurück zum Zitat Peters M et al (2011) Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem 4:1216–1240CrossRef Peters M et al (2011) Chemical Technologies for Exploiting and Recycling Carbon Dioxide into the Value Chain. ChemSusChem 4:1216–1240CrossRef
Zurück zum Zitat Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315CrossRef Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3:1311–1315CrossRef
Zurück zum Zitat Pontzen F, Leibner W, Gronemann V, Rothaemelm M, Ahlers B (2011) CO2-based methanol and DME – efficient technologies for industrial scale production. Catal Today 171:242–250CrossRef Pontzen F, Leibner W, Gronemann V, Rothaemelm M, Ahlers B (2011) CO2-based methanol and DME – efficient technologies for industrial scale production. Catal Today 171:242–250CrossRef
Zurück zum Zitat Quadreilli EA, Centi G, Duplan J-L, Perathoner S (2011) Carbon dioxide recycling: emerging large scale technologies with industrial potential. ChemSusChem 4:1194–1215CrossRef Quadreilli EA, Centi G, Duplan J-L, Perathoner S (2011) Carbon dioxide recycling: emerging large scale technologies with industrial potential. ChemSusChem 4:1194–1215CrossRef
Zurück zum Zitat Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440CrossRef Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440CrossRef
Zurück zum Zitat Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRef Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–644CrossRef
Zurück zum Zitat Saeki T, Hashimoto K, Kimura N, Omata K, Fujishima A (1995) Electrochemical reduction of CO2 with high-current density in a CO2 plus methanol medium. 2. CO formation promoted by tetrabutylammonium cation. J Electroanal Chem 390:77–82CrossRef Saeki T, Hashimoto K, Kimura N, Omata K, Fujishima A (1995) Electrochemical reduction of CO2 with high-current density in a CO2 plus methanol medium. 2. CO formation promoted by tetrabutylammonium cation. J Electroanal Chem 390:77–82CrossRef
Zurück zum Zitat Salehi-Khojin A, Jhong H-RM, Rosen BA, Zhu W, Ma S, Kenis PJA, Masel RI (2012) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117:1627–1632CrossRef Salehi-Khojin A, Jhong H-RM, Rosen BA, Zhu W, Ma S, Kenis PJA, Masel RI (2012) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117:1627–1632CrossRef
Zurück zum Zitat Sanchez-Sanchez CM, Montiel V et al (2001) Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure Appl Chem 73(12):1917–1927CrossRef Sanchez-Sanchez CM, Montiel V et al (2001) Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation. Pure Appl Chem 73(12):1917–1927CrossRef
Zurück zum Zitat Schiller G, Henne R et al (1998) High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer. Int J Hydrogen Energ 23(9):761–765CrossRef Schiller G, Henne R et al (1998) High performance electrodes for an advanced intermittently operated 10-kW alkaline water electrolyzer. Int J Hydrogen Energ 23(9):761–765CrossRef
Zurück zum Zitat Schouten KJP, Qin Z, Gallent EP, Koper MTM (2012) Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc 134:9864–9867CrossRef Schouten KJP, Qin Z, Gallent EP, Koper MTM (2012) Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J Am Chem Soc 134:9864–9867CrossRef
Zurück zum Zitat Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150CrossRef Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372:145–150CrossRef
Zurück zum Zitat Shidong S, Huamin Z et al (2008) Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int J Hydrogen Energ 33:4955–4961CrossRef Shidong S, Huamin Z et al (2008) Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int J Hydrogen Energ 33:4955–4961CrossRef
Zurück zum Zitat Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98:463–484CrossRef Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98:463–484CrossRef
Zurück zum Zitat Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2:19–28CrossRef Spinner NS, Vega JA, Mustain WE (2012) Recent progress in the electrochemical conversion and utilization of CO2. Catal Sci Technol 2:19–28CrossRef
Zurück zum Zitat Sridhar KR, Vaniman BT (1997) Oxygen production on Mars using solid oxide electrolysis. Solid State Ion 93:321CrossRef Sridhar KR, Vaniman BT (1997) Oxygen production on Mars using solid oxide electrolysis. Solid State Ion 93:321CrossRef
Zurück zum Zitat Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14:76–81CrossRef Tang W, Peterson AA, Varela AS, Jovanov ZP, Bech L, Durand WJ, Dahl S, Norskov JK, Chorkendorff I (2012) The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO2 electroreduction. Phys Chem Chem Phys 14:76–81CrossRef
Zurück zum Zitat Tao M (2008) Inorganic photovoltaic solar cells: silicon and beyond, The electrochemical society’s interface. Winter 17(4):30 Tao M (2008) Inorganic photovoltaic solar cells: silicon and beyond, The electrochemical society’s interface. Winter 17(4):30
Zurück zum Zitat Tao G, Sridhar KR, Chan CL (2004) Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface. Solid State Ion 175:621CrossRef Tao G, Sridhar KR, Chan CL (2004) Study of carbon dioxide electrolysis at electrode/electrolyte interface: Part II. Pt-YSZ cermet/YSZ interface. Solid State Ion 175:621CrossRef
Zurück zum Zitat Ted Oyama S et al (2012) Dry reforming of methane has no future for hydrogen production: comparison with steam reforming at high pressure in standard and membrane reactors. Int J Hyd Energy 37(13):10444CrossRef Ted Oyama S et al (2012) Dry reforming of methane has no future for hydrogen production: comparison with steam reforming at high pressure in standard and membrane reactors. Int J Hyd Energy 37(13):10444CrossRef
Zurück zum Zitat Thorson MR, Siil SI, Kenis PJA (2013) Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74CrossRef Thorson MR, Siil SI, Kenis PJA (2013) Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc 160:F69–F74CrossRef
Zurück zum Zitat Todoroki M, Hara K et al (1995) Electrochemical reduction of high-pressure CO2 at Pb, Hg and in electrodes in an aqueous Khco3 solution. J Electroanal Chem 394(1–2):199–203CrossRef Todoroki M, Hara K et al (1995) Electrochemical reduction of high-pressure CO2 at Pb, Hg and in electrodes in an aqueous Khco3 solution. J Electroanal Chem 394(1–2):199–203CrossRef
Zurück zum Zitat Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J Am Chem Soc 134:19520–19523CrossRef Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J Am Chem Soc 134:19520–19523CrossRef
Zurück zum Zitat Udupa KS, Subraman G et al (1971) Electrolytic reduction of carbon dioxide to formic acid. Electrochim Acta 16(9):1593CrossRef Udupa KS, Subraman G et al (1971) Electrolytic reduction of carbon dioxide to formic acid. Electrochim Acta 16(9):1593CrossRef
Zurück zum Zitat Utgikar VT (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31(7):939–944CrossRef Utgikar VT (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrogen Energ 31(7):939–944CrossRef
Zurück zum Zitat Whitlow JE, Parish CF (2003) Operation, modeling and analysis of the reverse water gas shift process, AIP Conference Proceedings, 654:1116–1123 Whitlow JE, Parish CF (2003) Operation, modeling and analysis of the reverse water gas shift process, AIP Conference Proceedings, 654:1116–1123
Zurück zum Zitat Wittcoff HA, Reuben BG, Plotkin JS (2013) Industrial organic chemicals, 3rd edn. Wiley, Hoboken Wittcoff HA, Reuben BG, Plotkin JS (2013) Industrial organic chemicals, 3rd edn. Wiley, Hoboken
Zurück zum Zitat Wu M et al (2007) Argonne National Lab report, ANL-ESD-07-10, Nov 2007 Wu M et al (2007) Argonne National Lab report, ANL-ESD-07-10, Nov 2007
Zurück zum Zitat Wu JJ, Risalvato FG, Ke FS, Pellechia PJ, Zhou XD (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):F353–F359CrossRef Wu JJ, Risalvato FG, Ke FS, Pellechia PJ, Zhou XD (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):F353–F359CrossRef
Zurück zum Zitat Wu J, Risalvato FG, Sharma PP, Pellechia PJ, Ke F-S, Zhou X-D (2013) Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of low temperature full electrochemical cells. J Electrochem Soc 160(9):F953–F957CrossRef Wu J, Risalvato FG, Sharma PP, Pellechia PJ, Ke F-S, Zhou X-D (2013) Electrochemical reduction of carbon dioxide II. Design, assembly, and performance of low temperature full electrochemical cells. J Electrochem Soc 160(9):F953–F957CrossRef
Zurück zum Zitat Yamamoto T, Hirota K et al (1998) Electrochemical reduction of CO2 in microspores. Chem Lett 8:825–826CrossRef Yamamoto T, Hirota K et al (1998) Electrochemical reduction of CO2 in microspores. Chem Lett 8:825–826CrossRef
Zurück zum Zitat Yamamoto T, Tryk DA et al (2000) Electrochemical reduction of CO2 in the micropores of activated carbon fibers. J Electrochem Soc 147(9):3393–3400CrossRef Yamamoto T, Tryk DA et al (2000) Electrochemical reduction of CO2 in the micropores of activated carbon fibers. J Electrochem Soc 147(9):3393–3400CrossRef
Zurück zum Zitat Yamamoto T, Tryk DA et al (2002) Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim Acta 47(20):3327–3334CrossRef Yamamoto T, Tryk DA et al (2002) Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim Acta 47(20):3327–3334CrossRef
Zurück zum Zitat Yano J, Yamasaki S (2008) Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J Appl Electrochem 38(12):1721–1726CrossRef Yano J, Yamasaki S (2008) Pulse-mode electrochemical reduction of carbon dioxide using copper and copper oxide electrodes for selective ethylene formation. J Appl Electrochem 38(12):1721–1726CrossRef
Zurück zum Zitat Yano H, Shirai F, Nakayama M, Ogura K (2002a) Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution. J Electroanal Chem 519(1-2):93–100CrossRef Yano H, Shirai F, Nakayama M, Ogura K (2002a) Efficient electrochemical conversion of CO2 to CO, C2H4 and CH4 at a three-phase interface on a Cu net electrode in acidic solution. J Electroanal Chem 519(1-2):93–100CrossRef
Zurück zum Zitat Yano H, Shirai F et al (2002b) Electrochemical reduction of CO2 at three-phase (gas/liquid/solid) and two-phase (liquid/solid) interfaces on Ag electrodes. J Electroanal Chem 533(1-2):113–118CrossRef Yano H, Shirai F et al (2002b) Electrochemical reduction of CO2 at three-phase (gas/liquid/solid) and two-phase (liquid/solid) interfaces on Ag electrodes. J Electroanal Chem 533(1-2):113–118CrossRef
Zurück zum Zitat Zaelke D et al (2011) Scientific synthesis of Calera carbon sequestration and carbonaceous by-product applications. Consensus findings of the scientific synthesis team, January 2011, University of California, Santa Barbara Zaelke D et al (2011) Scientific synthesis of Calera carbon sequestration and carbonaceous by-product applications. Consensus findings of the scientific synthesis team, January 2011, University of California, Santa Barbara
Zurück zum Zitat Zhai Y, Guan S, Sridhar N, Agarwal AS (2015) Method and apparatus for the electrochemical reduction of carbon dioxide. US Patent App. 9,145,615, 2015 Zhai Y, Guan S, Sridhar N, Agarwal AS (2015) Method and apparatus for the electrochemical reduction of carbon dioxide. US Patent App. 9,145,615, 2015
Zurück zum Zitat Aresta M (ed) (2010) Carbon dioxide as a chemical feedstock. Wiley, New York Aresta M (ed) (2010) Carbon dioxide as a chemical feedstock. Wiley, New York
Zurück zum Zitat Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation science and technology. Lewis Publishers, Boca Raton Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation science and technology. Lewis Publishers, Boca Raton
Zurück zum Zitat Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed Engl 44(18):2636–2639. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles
Zurück zum Zitat Styrin P, Quadrelli EA, Armstrong K (2015) Carbon dioxide utilisation: closing the carbon cycle. Elsevier, Amsterdam Styrin P, Quadrelli EA, Armstrong K (2015) Carbon dioxide utilisation: closing the carbon cycle. Elsevier, Amsterdam
Metadaten
Titel
Conversion of CO2 to Value Added Chemicals: Opportunities and Challenges
verfasst von
Arun S. Agarwal
Edward Rode
Narasi Sridhar
Davion Hill
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-14409-2_86