Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 1/2017

18.04.2015 | ORIGINAL ARTICLE

Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC)

verfasst von: Najam Ul Saqib, Minah Oh, Woori Jo, Seong-Kyu Park, Jai-Young Lee

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study a carbon-rich product was achieved by hydrothermal carbonization (HTC) of dead leaves at different treatment temperatures of 200–250 °C. Biomass was treated with hot deionized water for 30 min. The main objective of this study was to calculate the energy generation capability of dead leaves hydrochar by HTC process. The secondary objective was to analyze the physiochemical properties of hydrochar. There was a significant increase in the energy content and energy yield while decrease in yield of hydrochar was observed with increase in temperature. Surface area of hydrochar was maximum of 2.09 m2/g which was obtained when heated at 250 °C. Feedstock was having pore diameter of 8.26 nm which begin to increase on heating. The highest was reported at 220 °C of 21.79 with 163 % of increase. At 220 °C pore volume was also highest of 9.86 × 10−3. The highest energy content of 19.98 MJ/kg was obtained when the feedstock was heated at 240 °C which showed 21 % increase in energy content compared to that of raw biomass. Similarly, energy yield was also highest (91.67 %) at 240 °C. Therefore, it can be concluded that high-energy content hydrochar can be recovered when carbonized at 240 °C.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ling PX, Zheng JS, Feng X, Run CS (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623CrossRef Ling PX, Zheng JS, Feng X, Run CS (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623CrossRef
2.
Zurück zum Zitat Lu X, Flora RVJ, Berge ND (2014) Influence of process water quality on hydrothermal carbonization of cellulose. Bioresour Technol 154:229–239CrossRef Lu X, Flora RVJ, Berge ND (2014) Influence of process water quality on hydrothermal carbonization of cellulose. Bioresour Technol 154:229–239CrossRef
3.
Zurück zum Zitat Dong R, Zhang Y, Chrisitianson LL, Funk TL, Wang X, Wang Z (2009) Product distribution and implication of hydrothermal conversion of swine manure at low temperatures. Trans ASABE 52(4):1239–1248CrossRef Dong R, Zhang Y, Chrisitianson LL, Funk TL, Wang X, Wang Z (2009) Product distribution and implication of hydrothermal conversion of swine manure at low temperatures. Trans ASABE 52(4):1239–1248CrossRef
4.
Zurück zum Zitat Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32–65CrossRef Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32–65CrossRef
5.
Zurück zum Zitat Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703CrossRef Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703CrossRef
6.
Zurück zum Zitat Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ (2010) Hydrothermal carbonization of microalgae. Biomass Bio 34(6):875–882CrossRef Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ (2010) Hydrothermal carbonization of microalgae. Biomass Bio 34(6):875–882CrossRef
7.
Zurück zum Zitat Garcia AL, Torri C, Samori C, Vander SJ, Fabbri D, Kersten SRA (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26(1):642–657CrossRef Garcia AL, Torri C, Samori C, Vander SJ, Fabbri D, Kersten SRA (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26(1):642–657CrossRef
8.
Zurück zum Zitat Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, Vonkeitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35:2526–2533CrossRef Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, Vonkeitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35:2526–2533CrossRef
9.
Zurück zum Zitat Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effect on soil biota—a review. Soil Biol Biochem 43:1812–1836CrossRef Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effect on soil biota—a review. Soil Biol Biochem 43:1812–1836CrossRef
10.
Zurück zum Zitat Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L (2013) Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefinery 3:113–126CrossRef Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L (2013) Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefinery 3:113–126CrossRef
11.
Zurück zum Zitat Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28(3):435–440CrossRef Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28(3):435–440CrossRef
12.
Zurück zum Zitat Oliveria L, Blohse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:133–146 Oliveria L, Blohse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:133–146
13.
Zurück zum Zitat Lehmann J, Downie A, Crosky A, Munroe P (2009) Biochar for environmental management science and technology. Earthscan, London, pp 13–32 Lehmann J, Downie A, Crosky A, Munroe P (2009) Biochar for environmental management science and technology. Earthscan, London, pp 13–32
14.
Zurück zum Zitat Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45(8):629–634CrossRef Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45(8):629–634CrossRef
15.
16.
Zurück zum Zitat Zhao L, Cao X, Masek O, Zimmerman A (2009) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9CrossRef Zhao L, Cao X, Masek O, Zimmerman A (2009) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9CrossRef
17.
Zurück zum Zitat Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301CrossRef Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301CrossRef
18.
Zurück zum Zitat Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496CrossRef Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496CrossRef
19.
Zurück zum Zitat Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41(4):990–1000CrossRef Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41(4):990–1000CrossRef
20.
Zurück zum Zitat Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497CrossRef Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497CrossRef
21.
Zurück zum Zitat Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impacts of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428CrossRef Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impacts of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428CrossRef
22.
Zurück zum Zitat Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification on lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRef Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification on lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728CrossRef
23.
Zurück zum Zitat Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRef Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRef
24.
Zurück zum Zitat Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191CrossRef Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191CrossRef
25.
Zurück zum Zitat Mafakheri F, Nasiri F (2014) Modeling of biomass-to-energy supply operations: applications. Chall Res Dir Energy Policy 67:116–126CrossRef Mafakheri F, Nasiri F (2014) Modeling of biomass-to-energy supply operations: applications. Chall Res Dir Energy Policy 67:116–126CrossRef
26.
Zurück zum Zitat Lui Z, Balasubramanian R (2012) Hydrothermal carbonization of waste biomass for energy generation. Procedia Environ Sci 16:159–166CrossRef Lui Z, Balasubramanian R (2012) Hydrothermal carbonization of waste biomass for energy generation. Procedia Environ Sci 16:159–166CrossRef
27.
Zurück zum Zitat Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical structural and combustion characteristics of carbonization of palm empty fruits bunches. Bioresour Technol 135:683–689CrossRef Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical structural and combustion characteristics of carbonization of palm empty fruits bunches. Bioresour Technol 135:683–689CrossRef
28.
Zurück zum Zitat Guo YP, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric activation. Microporous Mesoporous Matter 100:12–19CrossRef Guo YP, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric activation. Microporous Mesoporous Matter 100:12–19CrossRef
29.
Zurück zum Zitat Gaskin JW, Stener C, Haris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans Asabe 51(6):2061–2069CrossRef Gaskin JW, Stener C, Haris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans Asabe 51(6):2061–2069CrossRef
30.
Zurück zum Zitat Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of Biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201CrossRef Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of Biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201CrossRef
31.
Zurück zum Zitat Wang Y, Wang L, Fang GD, Herath HMSK, Cang L, Xie Z, Zhou D (2013) Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations. Environ Pollut 172:86–93CrossRef Wang Y, Wang L, Fang GD, Herath HMSK, Cang L, Xie Z, Zhou D (2013) Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations. Environ Pollut 172:86–93CrossRef
32.
Zurück zum Zitat ISO 1928 Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value ISO 1928 Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value
33.
Zurück zum Zitat Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525CrossRef Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525CrossRef
34.
Zurück zum Zitat Abdullah H, Wu H (2009) Biochar as a Fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuel 23:4174–4181CrossRef Abdullah H, Wu H (2009) Biochar as a Fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuel 23:4174–4181CrossRef
35.
Zurück zum Zitat Yan W, Jason T, Tapas C, Acharjee, Charles J, Coronella, Vaquez VR (2010) Mass and energy balance of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742 Yan W, Jason T, Tapas C, Acharjee, Charles J, Coronella, Vaquez VR (2010) Mass and energy balance of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742
36.
Zurück zum Zitat Rouquerol F, Rouquerol I, Sing K (1999) Adsorption by powders and porous solids. Academic Press, London, p 13 Rouquerol F, Rouquerol I, Sing K (1999) Adsorption by powders and porous solids. Academic Press, London, p 13
37.
Zurück zum Zitat Theis JK, Rilling MC (2009) Characteristics of biochar, biological properties, biochar for environmental management sciences and technology. Earthscan, London, p 85 Theis JK, Rilling MC (2009) Characteristics of biochar, biological properties, biochar for environmental management sciences and technology. Earthscan, London, p 85
38.
Zurück zum Zitat Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of Lignocellulosic biomass. Energy Fuel 25:1802–1810CrossRef Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of Lignocellulosic biomass. Energy Fuel 25:1802–1810CrossRef
Metadaten
Titel
Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC)
verfasst von
Najam Ul Saqib
Minah Oh
Woori Jo
Seong-Kyu Park
Jai-Young Lee
Publikationsdatum
18.04.2015
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 1/2017
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-015-0371-1

Weitere Artikel der Ausgabe 1/2017

Journal of Material Cycles and Waste Management 1/2017 Zur Ausgabe