Skip to main content
Erschienen in: Thermal Engineering 2/2020

01.02.2020 | ENERGY SAVING, NEW AND RENEWABLE ENERGY SOURCES

Conversion of Solar Radiation into Vapor: New Possibilities Offered by Nanomaterials (Review)

verfasst von: A. S. Dmitriev, A. V. Klimenko

Erschienen in: Thermal Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The current state in converting solar radiation into steam using nanotechnologies and nanomaterials is considered. The main attention is paid to the use of novel nanostructured materials, including graphene components to generate steam, in particular, to the use of the latter as floating or volumetric solar absorbers. The absorbers of the above types have been classified, their physical and technological characteristics have been considered, and preferable variants for various applications have been established. It is stressed that the question on the efficiency of surface or volumetric absorbers has to be considered as applied to specific applications. The thermophysical processes that occur during the radiation absorption and the heating of the nanofluid have been described for different absorption patterns. Models that underlie the description of the thermophotonics and nanoplasmonics processes during the solar radiation absorption by nanocomponents have been formulated. The basic processes that occur under nanoplasmonic heating of nanocomponents by solar radiation and the heat-and-mass exchange between nanocomponents and the surrounding medium have been investigated. Special attention is paid to steam generation by plasmonic nanoparticles and graphene flakes, which are currently considered the basic elements for prospective efficient solar radiation conversion systems. The properties of the materials used to absorb solar radiation and their components are described. The materials that have already shown a high solar absorption coefficient are listed. The properties of nanofluids used for volumetric absorption of solar radiation and the subsequent localized heating are described. The significant role of novel steam-generation mechanisms based on plasmonic nanoparticles and graphene flakes is stressed. Mesoscopic and nanostructured solar radiation absorbers are presented that ensure the generation of steam used not only to produce energy but also to desalinate and sterilize water. The main unsolved problems of applying nanocomponents for the solar thermal industry are considered and new tasks are set, the solution of which will allow taking important steps towards using the above systems for solar energy conversion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Kalogirou, Solar Energy Engineering: Processes and Systems (Academic, Burlington, MA, 2013). S. Kalogirou, Solar Energy Engineering: Processes and Systems (Academic, Burlington, MA, 2013).
2.
Zurück zum Zitat J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 2013; Intellekt, Moscow, 2013).CrossRef J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 2013; Intellekt, Moscow, 2013).CrossRef
3.
Zurück zum Zitat Renewables2018Global Status Report. http://www.ren21. net/wpcontent/uploads/2018/06/17-8652_GSR2018_ FullReport_web_final_.pdf Renewables2018Global Status Report. http://​www.​ren21.​ net/wpcontent/uploads/2018/06/17-8652_GSR2018_ FullReport_web_final_.pdf
4.
Zurück zum Zitat Technology Roadmaps Concentrating Solar Power (Int. Energy Agency, 2010). https://www.iea.org/publications/ freepublications/publication/csp_roadmap.pdf Technology Roadmaps Concentrating Solar Power (Int. Energy Agency, 2010). https://​www.​iea.​org/​publications/​ freepublications/publication/csp_roadmap.pdf
5.
Zurück zum Zitat Concentrating Solar Power Gen3 Demonstration Roadmap. NREL (U.S. Department of Energy, 2017). https:// www.nrel.gov/docs/fy17osti/67464.pdf Concentrating Solar Power Gen3 Demonstration Roadmap. NREL (U.S. Department of Energy, 2017). https:// www.nrel.gov/docs/fy17osti/67464.pdf
6.
Zurück zum Zitat D. Yogi Goswami, Principles of Solar Engineering (Taylor & Francis, Boca Raton, FL, 2015). D. Yogi Goswami, Principles of Solar Engineering (Taylor & Francis, Boca Raton, FL, 2015).
7.
Zurück zum Zitat Concentrating Solar Power Technology, Ed. by K. Lovegrove and W. Stein (Woodhead, Oxford, 2012). Concentrating Solar Power Technology, Ed. by K. Lovegrove and W. Stein (Woodhead, Oxford, 2012).
8.
Zurück zum Zitat Concentrated Solar Thermal Energy Technologies. Recent Trends and Applications, 1st ed., Ed. by L. Chandra and A. Dixit (Springer-Verlag, Singapore, 2018). Concentrated Solar Thermal Energy Technologies. Recent Trends and Applications, 1st ed., Ed. by L. Chandra and A. Dixit (Springer-Verlag, Singapore, 2018).
9.
Zurück zum Zitat CSP World Map [online]. http://www.cspworld.org/ cspworldmap. Accessed November 27, 2015. CSP World Map [online]. http://​www.​cspworld.​org/​ cspworldmap. Accessed November 27, 2015.
14.
Zurück zum Zitat D. Narducci, P. Bermel, B. Lorenzi, N. Wang, and K. Yazawa, “Hybrid and fully thermoelectric solar harvesting,” Springer Ser. Mater. Sci. 268, 63–90 (2018).CrossRef D. Narducci, P. Bermel, B. Lorenzi, N. Wang, and K. Yazawa, “Hybrid and fully thermoelectric solar harvesting,” Springer Ser. Mater. Sci. 268, 63–90 (2018).CrossRef
23.
Zurück zum Zitat L. Weinstein, J. Loomis, B. Bhatia, D. Bierman, E. Wang, and G. Chen, “Concentrating solar power,” Chem. Rev. 115, 12797–12838 (2015).CrossRef L. Weinstein, J. Loomis, B. Bhatia, D. Bierman, E. Wang, and G. Chen, “Concentrating solar power,” Chem. Rev. 115, 12797–12838 (2015).CrossRef
30.
Zurück zum Zitat E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010). https://doi.org/10.1021/nn1000222 CrossRef E. Lukianova-Hleb, Y. Hu, L. Latterini, L. Tarpani, S. Lee, R. A. Drezek, J. H. Hafner, and D. O. Lapotko, “Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles,” ACS Nano 4, 2109–2123 (2010). https://​doi.​org/​10.​1021/​nn1000222 CrossRef
33.
Zurück zum Zitat A. S. Dmitriev, “Thermophysical problems of nano power engineering. Part 1,” Therm. Eng. 57, 1008–1017 (2010).CrossRef A. S. Dmitriev, “Thermophysical problems of nano power engineering. Part 1,” Therm. Eng. 57, 1008–1017 (2010).CrossRef
34.
Zurück zum Zitat A. S. Dmitriev, “Thermophysical problems of nano power engineering. Part 2,” Therm. Eng. 58, 301–309 (2011).CrossRef A. S. Dmitriev, “Thermophysical problems of nano power engineering. Part 2,” Therm. Eng. 58, 301–309 (2011).CrossRef
35.
Zurück zum Zitat A. S. Dmitriev, “Thermophysical problems of nano power engineering: New working media and components,” Energ. Tatarstana, No. 2, 10–27 (2013). A. S. Dmitriev, “Thermophysical problems of nano power engineering: New working media and components,” Energ. Tatarstana, No. 2, 10–27 (2013).
36.
Zurück zum Zitat H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao, J. Song, C. Jia, X. Xu, E. Hitz, H. Xie, S. Wang, F. Jiang, T. Li, Y. Li, A. Gong, R. Yang, S. Das, and L. Hu, “High-performance solar steam device with layered channels: Artificial tree with a reversed design,” Adv. Energy Mater. 8, 1701616 (2018). https://doi.org/10.1002/aenm.201701616 CrossRef H. Liu, C. Chen, G. Chen, Y. Kuang, X. Zhao, J. Song, C. Jia, X. Xu, E. Hitz, H. Xie, S. Wang, F. Jiang, T. Li, Y. Li, A. Gong, R. Yang, S. Das, and L. Hu, “High-performance solar steam device with layered channels: Artificial tree with a reversed design,” Adv. Energy Mater. 8, 1701616 (2018). https://​doi.​org/​10.​1002/​aenm.​201701616 CrossRef
47.
48.
Zurück zum Zitat J. Yang, Y. Pang, W. Huang, S. K. Shaw, J. Schiffbauer, M. A. Pillers, X. Mu, S. Luo, T. Zhang, Y. Huang, G. Li, S. Ptasinska, M. Lieberman, and T. Luo, “Functionalized graphene enables highly efficient solar thermal steam generation,” ACS Nano 11, 5510−5518 (2017). https://doi.org/10.1021/acsnano.7b00367 CrossRef J. Yang, Y. Pang, W. Huang, S. K. Shaw, J. Schiffbauer, M. A. Pillers, X. Mu, S. Luo, T. Zhang, Y. Huang, G. Li, S. Ptasinska, M. Lieberman, and T. Luo, “Functionalized graphene enables highly efficient solar thermal steam generation,” ACS Nano 11, 5510−5518 (2017). https://​doi.​org/​10.​1021/​acsnano.​7b00367 CrossRef
52.
Zurück zum Zitat Future of the Solar Energy (Massachusetts Inst. of Technology, Cambridge, MA, 2015). http://energy.mit.edu/ wp-content/uploads/2015/05/MITEI-The-Future-of-SolarEnergy.pdf Future of the Solar Energy (Massachusetts Inst. of Technology, Cambridge, MA, 2015). http://​energy.​mit.​edu/​ wp-content/uploads/2015/05/MITEI-The-Future-of-SolarEnergy.pdf
54.
Zurück zum Zitat A. S. Dmitriev and I. A. Mikhailova, Introduction to Nano Power Engineering (Mosk. Energ. Inst., Moscow, 2011) [in Russian]. A. S. Dmitriev and I. A. Mikhailova, Introduction to Nano Power Engineering (Mosk. Energ. Inst., Moscow, 2011) [in Russian].
55.
Zurück zum Zitat A. S. Dmitriev and I. A. Mikhailova, Physicochemistry of Nanostructures (Mosk. Energ. Inst., Moscow, 2013) [in Russian]. A. S. Dmitriev and I. A. Mikhailova, Physicochemistry of Nanostructures (Mosk. Energ. Inst., Moscow, 2013) [in Russian].
57.
58.
Zurück zum Zitat N. Hogan, A. Urban, C. Ayala-Orozco, A. Pimpinelli, N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014). https://doi.org/10.1021/nl5016975 CrossRef N. Hogan, A. Urban, C. Ayala-Orozco, A. Pimpinelli, N. J. Hogan, A. S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, and N. J. Halas, “Nanoparticles heat through light localization,” Nano Lett. 14, 4640–4645 (2014). https://​doi.​org/​10.​1021/​nl5016975 CrossRef
60.
Zurück zum Zitat A. S. Dmitriev, Introduction to Nano Thermophysics (BINOM Lab. Znanii, Moscow, 2015). A. S. Dmitriev, Introduction to Nano Thermophysics (BINOM Lab. Znanii, Moscow, 2015).
63.
Zurück zum Zitat A. S. Dmitriev, “Solar thermal engineering based on functional nanomaterials,” in Proc. Int. Sci.-Pract. Conf. Alternative and Intellectual Power Engineering, Voronezh, Dec. 6–8,2018 (Voronezh. Gos. Tekh. Univ., Voronezh, 2018), pp. 215–216. http://aie.cchgeu.ru/ upload/staff/upr-nauki-i-innov/konf-aie A. S. Dmitriev, “Solar thermal engineering based on functional nanomaterials,” in Proc. Int. Sci.-Pract. Conf. Alternative and Intellectual Power Engineering, Voronezh, Dec. 6–8,2018 (Voronezh. Gos. Tekh. Univ., Voronezh, 2018), pp. 215–216. http://​aie.​cchgeu.​ru/​ upload/staff/upr-nauki-i-innov/konf-aie
64.
Zurück zum Zitat D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015). https://doi.org/10.1038/srep17276 CrossRef D. Zhao, H. Duan, S. Yu, Y. Zhang, J. He, X. Quan, P. Tao, W. Shang, J. Wu, C. Song, and T. Deng, “Enhancing localized evaporation through separated light absorbing centers and scattering centers,” Sci. Rep. 5, 17276 (2015). https://​doi.​org/​10.​1038/​srep17276 CrossRef
67.
Zurück zum Zitat G. Liua, J. Xub, and K. Wang, “Solar water evaporation by black photothermal sheets,” Nano Energy 41, 269–284 (2017).CrossRef G. Liua, J. Xub, and K. Wang, “Solar water evaporation by black photothermal sheets,” Nano Energy 41, 269–284 (2017).CrossRef
68.
Zurück zum Zitat A. S. Dmitriev and D. A. Yunusbaev, “The effect of nanoparticles on properties of heat exchanger during heating by a solar radiation imitator,” in Proc. 23rd Int. Sci.-Tech. Conf. of Students and Postgraduates, Moscow, Mar. 2–3,2017 (Mosk. Energ. Inst., Moscow, 2017), Vol. 3, p. 92. A. S. Dmitriev and D. A. Yunusbaev, “The effect of nanoparticles on properties of heat exchanger during heating by a solar radiation imitator,” in Proc. 23rd Int. Sci.-Tech. Conf. of Students and Postgraduates, Moscow, Mar. 2–3,2017 (Mosk. Energ. Inst., Moscow, 2017), Vol. 3, p. 92.
69.
Zurück zum Zitat A. Dmitriev, “Solar heat power engine on the basis of direct conversion of the Planck spectrum of solar radiation with the use of nanofluids,” in Proc. Int. Conf. on Renewable Energy (ICREN), Barcelona, Apr, 25–27,2018. A. Dmitriev, “Solar heat power engine on the basis of direct conversion of the Planck spectrum of solar radiation with the use of nanofluids,” in Proc. Int. Conf. on Renewable Energy (ICREN), Barcelona, Apr, 25–27,2018.
70.
Zurück zum Zitat A. S. Dmitriev and D. A. Yunusbaev, “Solar thermal engineering based on conversion of Planck’s solar radiation spectrum using nanoliquids,” in Proc. Int. Conf. Modern Problems of Thermophysics and Power Engineering, Moscow, Oct. 9–11 2017 (Mosk. Energ. Inst., Moscow, 2017). Vol. 2, pp. 63–65. A. S. Dmitriev and D. A. Yunusbaev, “Solar thermal engineering based on conversion of Planck’s solar radiation spectrum using nanoliquids,” in Proc. Int. Conf. Modern Problems of Thermophysics and Power Engineering, Moscow, Oct. 911 2017 (Mosk. Energ. Inst., Moscow, 2017). Vol. 2, pp. 63–65.
71.
Zurück zum Zitat S. A. Alekseev, A. S. Dmitriev, P. G. Makarov, and I. A. Mikhailova, “Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes,” J. Phys.: Conf. Ser. 891 (conference 1) (2017). https://iopscience.iop.org/article/ 10.1088/1742-6596/891/1/012361 S. A. Alekseev, A. S. Dmitriev, P. G. Makarov, and I. A. Mikhailova, “Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes,” J. Phys.: Conf. Ser. 891 (conference 1) (2017). https://​iopscience.​iop.​org/​article/​ 10.1088/1742-6596/891/1/012361
77.
Zurück zum Zitat M. Higgins, S. Rahmaan, R. Devarapalli, M. Shelke, N. Jha, M. Higgins, S. Rahmaan, R. Devarapalli, M. Shelke, and N. Jha, “Carbon fabric based solar steam generation for waste water treatment,” Solar Energy. 159, 800–810 (2018).CrossRef M. Higgins, S. Rahmaan, R. Devarapalli, M. Shelke, N. Jha, M. Higgins, S. Rahmaan, R. Devarapalli, M. Shelke, and N. Jha, “Carbon fabric based solar steam generation for waste water treatment,” Solar Energy. 159, 800–810 (2018).CrossRef
79.
Zurück zum Zitat P. Zhang, Q. Liao, H. Yao, Y. Huang, H. Cheng, and L. Qu, “Direct solar steam generation system for clean water production,” Energy Storage Mater. 18, 429–446 (2019).CrossRef P. Zhang, Q. Liao, H. Yao, Y. Huang, H. Cheng, and L. Qu, “Direct solar steam generation system for clean water production,” Energy Storage Mater. 18, 429–446 (2019).CrossRef
Metadaten
Titel
Conversion of Solar Radiation into Vapor: New Possibilities Offered by Nanomaterials (Review)
verfasst von
A. S. Dmitriev
A. V. Klimenko
Publikationsdatum
01.02.2020
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 2/2020
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601520020019

Weitere Artikel der Ausgabe 2/2020

Thermal Engineering 2/2020 Zur Ausgabe

STEAM BOILERS, POWER PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

Application of Organic Fuel Additives to Enhance Coal Combustion Efficiency

HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS

New Correlations for Two Phase Flow Pressure Drop in Homogeneous Flows Model

    Premium Partner