Skip to main content
Erschienen in:

18.02.2023

Convolution-Enhanced Vision Transformer Network for Smoke Recognition

verfasst von: Guangtao Cheng, Yancong Zhou, Shan Gao, Yingyu Li, Hao Yu

Erschienen in: Fire Technology | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Visual smoke recognition remains a substantial challenging task due to: (1) the large variations of smoke color, texture, brightness and shape caused by complex environment; (2) the difficulties in data collection and insufficient smoke datasets. The novel Transformer has attracted increasing interests in computer vision, but it still falls behind state-of-the-art convolutional neural networks when trained on limited datasets. To improve the visual feature representation of smoke image and address the problem of too few smoke datasets in real scenes, this paper proposes a new convolution-enhanced vision Transformer network (CViTNet) for smoke recognition by introducing desirable properties of convolutional neural network into vision Transformer. Instead of the straight tokenization in vision Transformer, we firstly revisit the merits of convolutional neural network and design convolutional token embedding by overlapping convolution operation with stride on the token feature maps, achieving feature resolution reduction and channel capacity expansion. We then partition vision Transformer into multiple stages by convolutional token embedding and construct a hierarchical structure to enhance feature representation and reduce computational complexity. CViTNet enjoys the advantages of both CNN and Transformer. Finally, we validate our approach by conducting extensive experiments, showing that CViTNet is establishing a new stage-of-the-art detection accuracy that exceeds 99.54\(\%\) on average with 4.49 M learnable parameters and 346 M FLOPs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yuan F, Shi J, Xia X, Yang Y, Wang R (2016) Sub oriented histograms of local binary patterns for smoke detection and texture classification. KSII Trans Internet Inf Syst 10(4):1807–1823 Yuan F, Shi J, Xia X, Yang Y, Wang R (2016) Sub oriented histograms of local binary patterns for smoke detection and texture classification. KSII Trans Internet Inf Syst 10(4):1807–1823
2.
Zurück zum Zitat Yuan F, Shi J, Xia X, Yang Y, Fang Y, Fang Z, Mei T (2016) High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inf Sci 372:225–240CrossRef Yuan F, Shi J, Xia X, Yang Y, Fang Y, Fang Z, Mei T (2016) High-order local ternary patterns with locality preserving projection for smoke detection and image classification. Inf Sci 372:225–240CrossRef
3.
Zurück zum Zitat Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032MathSciNetCrossRefMATH Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25(9):4018–4032MathSciNetCrossRefMATH
4.
Zurück zum Zitat Gubbi J, Marusic S, Palaniswami M (2009) Smoke detection in video using wavelets and support vector machines. Fire Saf J 44(8):1110–1115CrossRef Gubbi J, Marusic S, Palaniswami M (2009) Smoke detection in video using wavelets and support vector machines. Fire Saf J 44(8):1110–1115CrossRef
5.
Zurück zum Zitat Ferrari RJ, Zhang H, Kube CR (2007) Real-time detection of steam in video images. Pattern Recogn 40(3):1148–1159CrossRefMATH Ferrari RJ, Zhang H, Kube CR (2007) Real-time detection of steam in video images. Pattern Recogn 40(3):1148–1159CrossRefMATH
6.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90CrossRef
7.
Zurück zum Zitat Szeged C, Liu W, Ji Y, Sermanet P, Reed S (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9 Szeged C, Liu W, Ji Y, Sermanet P, Reed S (2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–9
8.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 770–778
9.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Sci Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Comput Sci
10.
Zurück zum Zitat Huang G, Liu Z, Laurens V, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8 Huang G, Liu Z, Laurens V, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–8
11.
Zurück zum Zitat Yin Z, Wang B, Yuan F, Xia X, Shi J (2017) A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5:18429–18438CrossRef Yin Z, Wang B, Yuan F, Xia X, Shi J (2017) A deep normalization and convolutional neural network for image smoke detection. IEEE Access 5:18429–18438CrossRef
12.
Zurück zum Zitat Yuan F, Zhang L, Wan B, Xia X, Shi J (2019) Convolutional neural networks based on multi-scale additive merging layers for visual smoke recognition. Mach Vis Appl 30(2):345–358CrossRef Yuan F, Zhang L, Wan B, Xia X, Shi J (2019) Convolutional neural networks based on multi-scale additive merging layers for visual smoke recognition. Mach Vis Appl 30(2):345–358CrossRef
13.
Zurück zum Zitat Mao W, Wang W, Dou Z, Li Y (2018) Correction to: fire recognition based on multi-channel convolutional neural network. Fire Technol 54(2):1–24CrossRef Mao W, Wang W, Dou Z, Li Y (2018) Correction to: fire recognition based on multi-channel convolutional neural network. Fire Technol 54(2):1–24CrossRef
14.
Zurück zum Zitat Liu Y, Qin W, Liu K, Fang Z, Xiao Z (2019) A dual convolution network using dark channel prior for image smoke classification. IEEE Access 7:60697–60706CrossRef Liu Y, Qin W, Liu K, Fang Z, Xiao Z (2019) A dual convolution network using dark channel prior for image smoke classification. IEEE Access 7:60697–60706CrossRef
15.
Zurück zum Zitat Pundir AS, Raman B (2019) Dual deep learning model for image based smoke detection. Fire Technol 55(6):2419–2442CrossRef Pundir AS, Raman B (2019) Dual deep learning model for image based smoke detection. Fire Technol 55(6):2419–2442CrossRef
16.
Zurück zum Zitat Zhang F, Qin W, Liu Y, Xiao Z, Liu K (2020) A dual-channel convolution neural network for image smoke detection. Multimed Tools Appl 79(8):34587–34603CrossRef Zhang F, Qin W, Liu Y, Xiao Z, Liu K (2020) A dual-channel convolution neural network for image smoke detection. Multimed Tools Appl 79(8):34587–34603CrossRef
17.
Zurück zum Zitat Gu K, Xia Z, Qiao J, Lin W (2020) Deep dual-channel neural network for image-based smoke detection. IEEE Trans Multimed 22(2):311–323CrossRef Gu K, Xia Z, Qiao J, Lin W (2020) Deep dual-channel neural network for image-based smoke detection. IEEE Trans Multimed 22(2):311–323CrossRef
18.
Zurück zum Zitat Cheng G, Chen X, Gong J (2022) Deep convolutional network with pixel-aware attention for smoke recognition. Fire Technol 1–24 Cheng G, Chen X, Gong J (2022) Deep convolutional network with pixel-aware attention for smoke recognition. Fire Technol 1–24
20.
Zurück zum Zitat Ashish V, Noam S, Niki P, Jakob U, Llion J, Aidan NG, Lukasz K (2016) Attention is all you need. In: Proceedings of the Intererational Conference on Neural Information Processing Systems (NIPS), pp 6000–6010 Ashish V, Noam S, Niki P, Jakob U, Llion J, Aidan NG, Lukasz K (2016) Attention is all you need. In: Proceedings of the Intererational Conference on Neural Information Processing Systems (NIPS), pp 6000–6010
21.
Zurück zum Zitat Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint 2010.11929 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, Gelly S et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint 2010.11929
22.
Zurück zum Zitat Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp 843–852 Sun C, Shrivastava A, Singh S, Gupta A (2017) Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp 843–852
23.
Zurück zum Zitat Lecun Y, Bottou L (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef Lecun Y, Bottou L (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
24.
Zurück zum Zitat Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252MathSciNetCrossRef
25.
Zurück zum Zitat Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516CrossRef Khan A, Sohail A, Zahoora U, Qureshi AS (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53(8):5455–5516CrossRef
26.
Zurück zum Zitat Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7794–7803 Wang X, Girshick R, Gupta A, He K (2018) Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7794–7803
27.
Zurück zum Zitat Jie H, Li S, Albanie S, Gang S, Enhua W (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023CrossRef Jie H, Li S, Albanie S, Gang S, Enhua W (2020) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023CrossRef
28.
Zurück zum Zitat Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 3–19 Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: Convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 3–19
29.
Zurück zum Zitat Srinivas A, Lin T-Y, Parmar N, Shlens J, Abbeel P, Vaswani A (2021) Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 16519–16529 Srinivas A, Lin T-Y, Parmar N, Shlens J, Abbeel P, Vaswani A (2021) Bottleneck transformers for visual recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 16519–16529
30.
Zurück zum Zitat Bello I (2021) Lambdanetworks: modeling long-range interactions without attention. arXiv preprint 2102.08602 Bello I (2021) Lambdanetworks: modeling long-range interactions without attention. arXiv preprint 2102.08602
32.
Zurück zum Zitat Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M (2021) Transformers in vision: a survey. ACM Comput Surv 24:200 Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M (2021) Transformers in vision: a survey. ACM Comput Surv 24:200
33.
Zurück zum Zitat Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y et al (2020) A survey on visual transformer. arXiv e-prints, 2012 Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Xu Y et al (2020) A survey on visual transformer. arXiv e-prints, 2012
34.
Zurück zum Zitat Touvron H, Cord M, Matthijs D, Massa F, Sablayrolles A, Jegou H (2021) Training data-efficient image transformers & distillation through attention. In: Proceedings of the International Conference on Learning Representations (ICLR), pp 10347–10357 Touvron H, Cord M, Matthijs D, Massa F, Sablayrolles A, Jegou H (2021) Training data-efficient image transformers & distillation through attention. In: Proceedings of the International Conference on Learning Representations (ICLR), pp 10347–10357
35.
Zurück zum Zitat Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE Intererational Conference on Computer Vision (ICCV), pp 10012–10022 Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE Intererational Conference on Computer Vision (ICCV), pp 10012–10022
36.
37.
Zurück zum Zitat Zhou D, Kang B, Jin X, Yang L, Lian X, Jiang Z, Hou Q, Feng J (2021) Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886 Zhou D, Kang B, Jin X, Yang L, Lian X, Jiang Z, Hou Q, Feng J (2021) Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:​2103.​11886
38.
Zurück zum Zitat Ali A, Touvron H, Caron M, Bojanowski P, Douze M, Joulin A, Laptev I, Neverova N, Synnaeve G, Verbeek J et al (2021) Xcit: cross-covariance image transformers. In: Advances in Neural Information Processing Systems, vol 34 Ali A, Touvron H, Caron M, Bojanowski P, Douze M, Joulin A, Laptev I, Neverova N, Synnaeve G, Verbeek J et al (2021) Xcit: cross-covariance image transformers. In: Advances in Neural Information Processing Systems, vol 34
39.
Zurück zum Zitat Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L (2021) Cvt: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 22–31 Wu H, Xiao B, Codella N, Liu M, Dai X, Yuan L, Zhang L (2021) Cvt: introducing convolutions to vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 22–31
40.
Zurück zum Zitat Xu W, Xu Y, Chang T, Tu Z (2021) Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9981–9990 Xu W, Xu Y, Chang T, Tu Z (2021) Co-scale conv-attentional image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9981–9990
41.
Zurück zum Zitat Graham B, El-Nouby A, Touvron H, Stock P, Joulin A, Jégou H, Douze M (2021) Levit: a vision transformer in convnet’s clothing for faster inference. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12259–12269 Graham B, El-Nouby A, Touvron H, Stock P, Joulin A, Jégou H, Douze M (2021) Levit: a vision transformer in convnet’s clothing for faster inference. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12259–12269
42.
Zurück zum Zitat Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L (2021) Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 568–578 Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L (2021) Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 568–578
43.
Zurück zum Zitat Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y (2021) Transformer in transformer. Adv Neural Inf Process Syst 34:15908–15919 Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y (2021) Transformer in transformer. Adv Neural Inf Process Syst 34:15908–15919
44.
Zurück zum Zitat Yuan K, Guo S, Liu Z, Zhou A, Yu F, Wu W (2021) Incorporating convolution designs into visual transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 579–588 Yuan K, Guo S, Liu Z, Zhou A, Yu F, Wu W (2021) Incorporating convolution designs into visual transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 579–588
45.
Zurück zum Zitat Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L (2022) Pvt 2: improved baselines with pyramid vision transformer. Comput Visual Media 8(3):415–424CrossRef Wang W, Xie E, Li X, Fan D-P, Song K, Liang D, Lu T, Luo P, Shao L (2022) Pvt 2: improved baselines with pyramid vision transformer. Comput Visual Media 8(3):415–424CrossRef
46.
Zurück zum Zitat Heo B, Yun S, Han D, Chun S, Choe J, Oh SJ (2021) Rethinking spatial dimensions of vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 11936–11945 Heo B, Yun S, Han D, Chun S, Choe J, Oh SJ (2021) Rethinking spatial dimensions of vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 11936–11945
47.
Zurück zum Zitat Chu X, Tian Z, Zhang B, Wang X, Wei X, Xia H, Shen C (2021) Conditional positional encodings for vision transformers. arXiv preprint arXiv:2102.10882 Chu X, Tian Z, Zhang B, Wang X, Wei X, Xia H, Shen C (2021) Conditional positional encodings for vision transformers. arXiv preprint arXiv:​2102.​10882
48.
Zurück zum Zitat Li Y, Zhang K, Cao J, Timofte R, Van Gool L (2021) Localvit: bringing locality to vision transformers. arXiv preprint 2104.05707 Li Y, Zhang K, Cao J, Timofte R, Van Gool L (2021) Localvit: bringing locality to vision transformers. arXiv preprint 2104.05707
49.
Zurück zum Zitat Su X, You S, Xie J, Zheng M, Wang F, Qian C, Zhang C, Wang X, Xu C (2021) Vision transformer architecture search. arXiv e-prints, 2106 Su X, You S, Xie J, Zheng M, Wang F, Qian C, Zhang C, Wang X, Xu C (2021) Vision transformer architecture search. arXiv e-prints, 2106
50.
Zurück zum Zitat Chen M, Peng H, Fu J, Ling H (2021) Autoformer: searching transformers for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12270–12280 Chen M, Peng H, Fu J, Ling H (2021) Autoformer: searching transformers for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12270–12280
51.
Zurück zum Zitat Chen B, Li P, Li C, Li B, Bai L, Lin C, Sun M, Yan J, Ouyang W (2021) Glit: Neural architecture search for global and local image transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12–21 Chen B, Li P, Li C, Li B, Bai L, Lin C, Sun M, Yan J, Ouyang W (2021) Glit: Neural architecture search for global and local image transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 12–21
53.
Zurück zum Zitat Hendrycks D, Gimpel K (2016) Bridging nonlinearities and stochastic regularizers with gaussian error linear units Hendrycks D, Gimpel K (2016) Bridging nonlinearities and stochastic regularizers with gaussian error linear units
54.
55.
Zurück zum Zitat Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y (2019) Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 6023–6032 Yun S, Han D, Oh SJ, Chun S, Choe J, Yoo Y (2019) Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 6023–6032
56.
Zurück zum Zitat Zhong Z, Zheng L, Kang G, Li S, Yang Y (2020) Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 13001–13008 Zhong Z, Zheng L, Kang G, Li S, Yang Y (2020) Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 13001–13008
57.
Zurück zum Zitat Cubuk ED, Zoph B, Shlens J, Le QV (2020) Randaugment: Practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops Cubuk ED, Zoph B, Shlens J, Le QV (2020) Randaugment: Practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
58.
Zurück zum Zitat Yuan L, Tay F, Li G, Wang T, Feng J (2019) Revisit knowledge distillation: a teacher-free framework. arxiv 2019. arXiv preprint 1909.11723 Yuan L, Tay F, Li G, Wang T, Feng J (2019) Revisit knowledge distillation: a teacher-free framework. arxiv 2019. arXiv preprint 1909.11723
59.
Zurück zum Zitat Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ (2016) Deep networks with stochastic depth. In: European Conference on Computer Vision, pp 646–661. Springer, New York Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ (2016) Deep networks with stochastic depth. In: European Conference on Computer Vision, pp 646–661. Springer, New York
60.
Zurück zum Zitat Loshchilov I, Hutter F (2018) Fixing weight decay regularization in adam Loshchilov I, Hutter F (2018) Fixing weight decay regularization in adam
61.
Zurück zum Zitat Aditya C, Anirban S, Abhishek D, Prantik H (2018) Grad-cam++: improved visual explanations for deep convolutional networks. arxiv 2018. arXiv preprint 1710.11063 Aditya C, Anirban S, Abhishek D, Prantik H (2018) Grad-cam++: improved visual explanations for deep convolutional networks. arxiv 2018. arXiv preprint 1710.11063
Metadaten
Titel
Convolution-Enhanced Vision Transformer Network for Smoke Recognition
verfasst von
Guangtao Cheng
Yancong Zhou
Shan Gao
Yingyu Li
Hao Yu
Publikationsdatum
18.02.2023
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 2/2023
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01378-8

Weitere Artikel der Ausgabe 2/2023

Fire Technology 2/2023 Zur Ausgabe