Skip to main content

2024 | OriginalPaper | Buchkapitel

Convolution Neural Network Versus Transfer Learning in Image Classification

verfasst von : O. Rama Devi, U. Surya Venkata Sekhar, S. Siva Rama Krishna, T. S. Rajarajeswari

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this research paper is comprehensive comparative analysis between two prominent approaches, namely Convolutional Neural Networks (CNN) and MobileNetV2-based transfer learning, for the task of image classification. Specifically, the focus is on determining the effectiveness of these approaches in accurately classifying images (in our case it is cat vs. dog) (Szyc in 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE, 2018 [Szyc, K.: Comparison of different deep-learning methods for image classification. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018)]). Through meticulous evaluation and comparison of results obtained from a benchmark dataset, this study aims to discern the strengths and limitations of each method. By shedding light on their respective merits, this research contributes to the advancement of image classification techniques and paves the way for further investigations in this domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Szyc, K.: Comparison of different deep-learning methods for image classification. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018) Szyc, K.: Comparison of different deep-learning methods for image classification. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES). IEEE (2018)
2.
Zurück zum Zitat Tiwari, V., et al.: Image classification using deep neural network. In: 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE (2020) Tiwari, V., et al.: Image classification using deep neural network. In: 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN). IEEE (2020)
3.
Zurück zum Zitat He, Z.: Deep learning in image classification: a survey report. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020) He, Z.: Deep learning in image classification: a survey report. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020)
4.
Zurück zum Zitat Jmour, N., Zayen, S., Abdelkrim, A.: Convolutional neural networks for image classification. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE (2018) Jmour, N., Zayen, S., Abdelkrim, A.: Convolutional neural networks for image classification. In: 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE (2018)
5.
Zurück zum Zitat Ding, B., Qian, H., Zhou, J.: Activation functions and their characteristics in deep neural networks. In: 2018 Chinese Control and Decision Conference (CCDC). IEEE (2018) Ding, B., Qian, H., Zhou, J.: Activation functions and their characteristics in deep neural networks. In: 2018 Chinese Control and Decision Conference (CCDC). IEEE (2018)
6.
Zurück zum Zitat Dong, K., et al.: MobileNetV2 model for image classification. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020) Dong, K., et al.: MobileNetV2 model for image classification. In: 2020 2nd International Conference on Information Technology and Computer Application (ITCA). IEEE (2020)
9.
Zurück zum Zitat Raja Rajeswari.Thota, T.S., Srinivasa Rao, M., Sandhya Rani, N.: Under water image enhancement technique. In: Advancements in Aeromechanical Materials for Manufacturing: ICAAMM-2021 AIP Conference Proceedings, vol. 2492, pp. 030069-1–030069-5. https://doi.org/10.1063/5.0114565. Published by AIP Publishing. 978-0-7354-4438-6/$30.00 Raja Rajeswari.Thota, T.S., Srinivasa Rao, M., Sandhya Rani, N.: Under water image enhancement technique. In: Advancements in Aeromechanical Materials for Manufacturing: ICAAMM-2021 AIP Conference Proceedings, vol. 2492, pp. 030069-1–030069-5. https://​doi.​org/​10.​1063/​5.​0114565. Published by AIP Publishing. 978-0-7354-4438-6/$30.00
Metadaten
Titel
Convolution Neural Network Versus Transfer Learning in Image Classification
verfasst von
O. Rama Devi
U. Surya Venkata Sekhar
S. Siva Rama Krishna
T. S. Rajarajeswari
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_27