Skip to main content
main-content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2016 | OriginalPaper | Buchkapitel

Convolutional Neural Networks as a Computational Model for the Underlying Processes of Aesthetics Perception

verfasst von : Joachim Denzler, Erik Rodner, Marcel Simon

Erschienen in: Computer Vision – ECCV 2016 Workshops

Verlag: Springer International Publishing

share
TEILEN

Abstract

Understanding the underlying processes of aesthetic perception is one of the ultimate goals in empirical aesthetics. While deep learning and convolutional neural networks (CNN) already arrived in the area of aesthetic rating of art and photographs, only little attempts have been made to apply CNNs as the underlying model for aesthetic perception. The information processing architecture of CNNs shows a strong match with the visual processing pipeline in the human visual system. Thus, it seems reasonable to exploit such models to gain better insight into the universal processes that drives aesthetic perception. This work shows first results supporting this claim by analyzing already known common statistical properties of visual art, like sparsity and self-similarity, with the help of CNNs. We report about observed differences in the responses of individual layers between art and non-art images, both in forward and backward (simulation) processing, that might open new directions of research in empirical aesthetics.
Literatur
1.
Zurück zum Zitat Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J.: Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Comput. Biol. 10(12), e1003963 (2014) CrossRef Cadieu, C.F., Hong, H., Yamins, D.L., Pinto, N., Ardila, D., Solomon, E.A., Majaj, N.J., DiCarlo, J.J.: Deep neural networks rival the representation of primate it cortex for core visual object recognition. PLoS Comput. Biol. 10(12), e1003963 (2014) CrossRef
2.
Zurück zum Zitat Murray, N., Marchesotti, L., Perronnin, F.: Ava: a large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012) Murray, N., Marchesotti, L., Perronnin, F.: Ava: a large-scale database for aesthetic visual analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2408–2415. IEEE (2012)
3.
Zurück zum Zitat Amirshahi, S.A., Hayn-Leichsenring, G.U., Denzler, J., Redies, C.: JenAesthetics subjective dataset: analyzing paintings by subjective scores. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 3–19. Springer, Heidelberg (2015). doi: 10.​1007/​978-3-319-16178-5_​1 CrossRef Amirshahi, S.A., Hayn-Leichsenring, G.U., Denzler, J., Redies, C.: JenAesthetics subjective dataset: analyzing paintings by subjective scores. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 3–19. Springer, Heidelberg (2015). doi: 10.​1007/​978-3-319-16178-5_​1 CrossRef
4.
Zurück zum Zitat Proctor, N.: The google art project: a new generation of museums on the web? Curator Museum J. 54(2), 215–221 (2011) CrossRef Proctor, N.: The google art project: a new generation of museums on the web? Curator Museum J. 54(2), 215–221 (2011) CrossRef
5.
Zurück zum Zitat Goetz, P.W., McHenry, R., Hoiberg, D. (eds.): Encyclopedia Britannica, vol. 9. Encyclopaedia Britannica Inc., Chicago (2010) Goetz, P.W., McHenry, R., Hoiberg, D. (eds.): Encyclopedia Britannica, vol. 9. Encyclopaedia Britannica Inc., Chicago (2010)
6.
Zurück zum Zitat Ravi, F., Battiato, S.: A novel computational tool for aesthetic scoring of digital photography. In: Conference on Colour in Graphics, Imaging, and Vision, Society for Imaging Science and Technology, pp. 349–354 (2012) Ravi, F., Battiato, S.: A novel computational tool for aesthetic scoring of digital photography. In: Conference on Colour in Graphics, Imaging, and Vision, Society for Imaging Science and Technology, pp. 349–354 (2012)
7.
Zurück zum Zitat Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006) CrossRef Datta, R., Joshi, D., Li, J., Wang, J.Z.: Studying aesthetics in photographic images using a computational approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 288–301. Springer, Heidelberg (2006) CrossRef
8.
Zurück zum Zitat Romero, J., Machado, P., Carballal, A., Osorio, O.: Aesthetic classification and sorting based on image compression. In: Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 394–403. Springer, Heidelberg (2011). doi: 10.​1007/​978-3-642-20520-0_​40 CrossRef Romero, J., Machado, P., Carballal, A., Osorio, O.: Aesthetic classification and sorting based on image compression. In: Chio, C., et al. (eds.) EvoApplications 2011. LNCS, vol. 6625, pp. 394–403. Springer, Heidelberg (2011). doi: 10.​1007/​978-3-642-20520-0_​40 CrossRef
9.
Zurück zum Zitat Wu, Y., Bauckhage, C., Thurau, C.: The good, the bad, and the ugly: predicting aesthetic image labels. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1586–1589. IEEE (2010) Wu, Y., Bauckhage, C., Thurau, C.: The good, the bad, and the ugly: predicting aesthetic image labels. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 1586–1589. IEEE (2010)
10.
Zurück zum Zitat Wickramasinghe, W.A.P., Dharmaratne, A.T., Kodikara, N.D.: A tool for ranking and enhancing aesthetic quality of paintings. In: Kim, T., Adeli, H., Ramos, C., Kang, B.-H. (eds.) SIP 2011. CCIS, vol. 260, pp. 254–260. Springer, Heidelberg (2011). doi: 10.​1007/​978-3-642-27183-0_​27 CrossRef Wickramasinghe, W.A.P., Dharmaratne, A.T., Kodikara, N.D.: A tool for ranking and enhancing aesthetic quality of paintings. In: Kim, T., Adeli, H., Ramos, C., Kang, B.-H. (eds.) SIP 2011. CCIS, vol. 260, pp. 254–260. Springer, Heidelberg (2011). doi: 10.​1007/​978-3-642-27183-0_​27 CrossRef
11.
Zurück zum Zitat Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE J. Sel. Top. Sign. Process. 3(2), 236–252 (2009) CrossRef Li, C., Chen, T.: Aesthetic visual quality assessment of paintings. IEEE J. Sel. Top. Sign. Process. 3(2), 236–252 (2009) CrossRef
12.
Zurück zum Zitat Bhattacharya, S., Sukthankar, R., Shah, M.: A framework for photo-quality assessment and enhancement based on visual aesthetics. In: Proceedings of the International Conference on Multimedia, pp. 271–280. ACM (2010) Bhattacharya, S., Sukthankar, R., Shah, M.: A framework for photo-quality assessment and enhancement based on visual aesthetics. In: Proceedings of the International Conference on Multimedia, pp. 271–280. ACM (2010)
13.
Zurück zum Zitat Zhang, F.L., Wang, M., Hu, S.M.: Aesthetic image enhancement by dependence-aware object re-composition. IEEE Trans. Multimedia 15(7), 1480–1490 (2013) CrossRef Zhang, F.L., Wang, M., Hu, S.M.: Aesthetic image enhancement by dependence-aware object re-composition. IEEE Trans. Multimedia 15(7), 1480–1490 (2013) CrossRef
14.
Zurück zum Zitat Escoffery, D.: A framework for learning photographic composition preferences from gameplay data (2012) Escoffery, D.: A framework for learning photographic composition preferences from gameplay data (2012)
15.
Zurück zum Zitat Jin, Y., Wu, Q., Liu, L.: Aesthetic photo composition by optimal crop-and-warp. Comput. Graph. 36(8), 955–965 (2012) CrossRef Jin, Y., Wu, Q., Liu, L.: Aesthetic photo composition by optimal crop-and-warp. Comput. Graph. 36(8), 955–965 (2012) CrossRef
16.
Zurück zum Zitat Gallea, R., Ardizzone, E., Pirrone, R.: Automatic aesthetic photo composition. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 21–30. Springer, Heidelberg (2013) CrossRef Gallea, R., Ardizzone, E., Pirrone, R.: Automatic aesthetic photo composition. In: Petrosino, A. (ed.) ICIAP 2013, Part II. LNCS, vol. 8157, pp. 21–30. Springer, Heidelberg (2013) CrossRef
17.
Zurück zum Zitat Wallraven, C., Fleming, R., Cunningham, D., Rigau, J., Feixas, M., Sbert, M.: Categorizing art: comparing humans and computers. Comput. Graph. 33(4), 484–495 (2009) CrossRef Wallraven, C., Fleming, R., Cunningham, D., Rigau, J., Feixas, M., Sbert, M.: Categorizing art: comparing humans and computers. Comput. Graph. 33(4), 484–495 (2009) CrossRef
18.
Zurück zum Zitat Condorovici, R.G., Florea, C., Vrânceanu, R., Vertan, C.: Perceptually-inspired artistic genre identification system in digitized painting collections. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 687–696. Springer, Heidelberg (2013) CrossRef Condorovici, R.G., Florea, C., Vrânceanu, R., Vertan, C.: Perceptually-inspired artistic genre identification system in digitized painting collections. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 687–696. Springer, Heidelberg (2013) CrossRef
19.
20.
Zurück zum Zitat Yao, L.: Automated analysis of composition and style of photographs and paintings. Ph.D. thesis. The Pennsylvania State University (2013) Yao, L.: Automated analysis of composition and style of photographs and paintings. Ph.D. thesis. The Pennsylvania State University (2013)
21.
Zurück zum Zitat Obrador, P., Schmidt-Hackenberg, L., Oliver, N.: The role of image composition in image aesthetics. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3185–3188. IEEE (2010) Obrador, P., Schmidt-Hackenberg, L., Oliver, N.: The role of image composition in image aesthetics. In: 2010 17th IEEE International Conference on Image Processing (ICIP), pp. 3185–3188. IEEE (2010)
22.
Zurück zum Zitat Cetinic, E., Grgic, S.: Automated painter recognition based on image feature extraction. In: 2013 55th International Symposium ELMAR, pp. 19–22. IEEE (2013) Cetinic, E., Grgic, S.: Automated painter recognition based on image feature extraction. In: 2013 55th International Symposium ELMAR, pp. 19–22. IEEE (2013)
23.
Zurück zum Zitat Wang, Y., Dai, Q., Feng, R., Jiang, Y.G.: Beauty is here: evaluating aesthetics in videos using multimodal features and free training data. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 369–372. ACM (2013) Wang, Y., Dai, Q., Feng, R., Jiang, Y.G.: Beauty is here: evaluating aesthetics in videos using multimodal features and free training data. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 369–372. ACM (2013)
24.
Zurück zum Zitat Chung, S., Sammartino, J., Bai, J., Barsky, B.A.: Can motion features inform video aesthetic preferences. University of California at Berkeley Technical report No. UCB/EECS-2012-172, 29 June 2012 Chung, S., Sammartino, J., Bai, J., Barsky, B.A.: Can motion features inform video aesthetic preferences. University of California at Berkeley Technical report No. UCB/EECS-2012-172, 29 June 2012
25.
Zurück zum Zitat Bhattacharya, S., Nojavanasghari, B., Chen, T., Liu, D., Chang, S.F., Shah, M.: Towards a comprehensive computational model foraesthetic assessment of videos. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 361–364. ACM (2013) Bhattacharya, S., Nojavanasghari, B., Chen, T., Liu, D., Chang, S.F., Shah, M.: Towards a comprehensive computational model foraesthetic assessment of videos. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 361–364. ACM (2013)
26.
Zurück zum Zitat Moorthy, A.K., Obrador, P., Oliver, N.: Towards computational models of the visual aesthetic appeal of consumer videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 1–14. Springer, Heidelberg (2010) CrossRef Moorthy, A.K., Obrador, P., Oliver, N.: Towards computational models of the visual aesthetic appeal of consumer videos. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 1–14. Springer, Heidelberg (2010) CrossRef
27.
Zurück zum Zitat Galanter, P.: Computational aesthetic evaluation: steps towards machine creativity. In: ACM SIGGRAPH 2012 Courses, p. 14. ACM (2012) Galanter, P.: Computational aesthetic evaluation: steps towards machine creativity. In: ACM SIGGRAPH 2012 Courses, p. 14. ACM (2012)
28.
Zurück zum Zitat Zhang, K., Harrell, S., Ji, X.: Computational aesthetics: on the complexity of computer-generated paintings. Leonardo 45(3), 243–248 (2012) CrossRef Zhang, K., Harrell, S., Ji, X.: Computational aesthetics: on the complexity of computer-generated paintings. Leonardo 45(3), 243–248 (2012) CrossRef
29.
Zurück zum Zitat Zhang, H., Augilius, E., Honkela, T., Laaksonen, J., Gamper, H., Alene, H.: Analyzing emotional semantics of abstract art using low-level image features. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 413–423. Springer, Heidelberg (2011) CrossRef Zhang, H., Augilius, E., Honkela, T., Laaksonen, J., Gamper, H., Alene, H.: Analyzing emotional semantics of abstract art using low-level image features. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 413–423. Springer, Heidelberg (2011) CrossRef
30.
Zurück zum Zitat Joshi, D., Datta, R., Fedorovskaya, E., Luong, Q.T., Wang, J.Z., Li, J., Luo, J.: Aesthetics and emotions in images. Sign. Process. Mag. 28(5), 94–115 (2011). IEEE Joshi, D., Datta, R., Fedorovskaya, E., Luong, Q.T., Wang, J.Z., Li, J., Luo, J.: Aesthetics and emotions in images. Sign. Process. Mag. 28(5), 94–115 (2011). IEEE
31.
Zurück zum Zitat Bertola, F., Patti, V.: Emotional responses to artworks in online collections. In: Proceedings of PATCH (2013) Bertola, F., Patti, V.: Emotional responses to artworks in online collections. In: Proceedings of PATCH (2013)
32.
Zurück zum Zitat Oncu, A.I., Deger, F., Hardeberg, J.Y.: Evaluation of digital inpainting quality in the context of artwork restoration. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 561–570. Springer, Heidelberg (2012). doi: 10.​1007/​978-3-642-33863-2_​58 CrossRef Oncu, A.I., Deger, F., Hardeberg, J.Y.: Evaluation of digital inpainting quality in the context of artwork restoration. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 561–570. Springer, Heidelberg (2012). doi: 10.​1007/​978-3-642-33863-2_​58 CrossRef
33.
Zurück zum Zitat Lo, K.-Y., Liu, K.-H., Chen, C.-S.: Intelligent photographing interface with on-device aesthetic quality assessment. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part II. LNCS, vol. 7729, pp. 533–544. Springer, Heidelberg (2013) CrossRef Lo, K.-Y., Liu, K.-H., Chen, C.-S.: Intelligent photographing interface with on-device aesthetic quality assessment. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part II. LNCS, vol. 7729, pp. 533–544. Springer, Heidelberg (2013) CrossRef
34.
Zurück zum Zitat Mitarai, H., Itamiya, Y., Yoshitaka, A.: Interactive photographic shooting assistance based on composition and saliency. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 348–363. Springer, Heidelberg (2013) CrossRef Mitarai, H., Itamiya, Y., Yoshitaka, A.: Interactive photographic shooting assistance based on composition and saliency. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS, vol. 7975, pp. 348–363. Springer, Heidelberg (2013) CrossRef
35.
Zurück zum Zitat Yao, L., Suryanarayan, P., Qiao, M., Wang, J.Z., Li, J.: Oscar: on-site composition and aesthetics feedback through exemplars for photographers. Int. J. Comput. Vis. 96(3), 353–383 (2012) CrossRef Yao, L., Suryanarayan, P., Qiao, M., Wang, J.Z., Li, J.: Oscar: on-site composition and aesthetics feedback through exemplars for photographers. Int. J. Comput. Vis. 96(3), 353–383 (2012) CrossRef
36.
Zurück zum Zitat Datta, R., Wang, J.Z.: Acquine: aesthetic quality inference engine-real-time automatic rating of photo aesthetics. In: Proceedings of the International Conference on Multimedia Information Retrieval, pp. 421–424. ACM (2010) Datta, R., Wang, J.Z.: Acquine: aesthetic quality inference engine-real-time automatic rating of photo aesthetics. In: Proceedings of the International Conference on Multimedia Information Retrieval, pp. 421–424. ACM (2010)
37.
Zurück zum Zitat Redies, C.: A universal model of esthetic perception based on the sensory coding of natural stimuli. Spat. Vis. 21(1), 97–117 (2007) CrossRef Redies, C.: A universal model of esthetic perception based on the sensory coding of natural stimuli. Spat. Vis. 21(1), 97–117 (2007) CrossRef
38.
Zurück zum Zitat Redies, C., Hasenstein, J., Denzler, J.: Fractal-like image statistics in visual art: similarity to natural scenes. Spat. Vis. 21(1–2), 97–117 (2007) CrossRef Redies, C., Hasenstein, J., Denzler, J.: Fractal-like image statistics in visual art: similarity to natural scenes. Spat. Vis. 21(1–2), 97–117 (2007) CrossRef
39.
Zurück zum Zitat Redies, C., Haenisch, J., Blickhan, M., Denzler, J.: Artists portray human faces with the fourier statistics of complex natural scenes. Netw. Comput. Neural Syst. 18(3), 235–248 (2007) CrossRef Redies, C., Haenisch, J., Blickhan, M., Denzler, J.: Artists portray human faces with the fourier statistics of complex natural scenes. Netw. Comput. Neural Syst. 18(3), 235–248 (2007) CrossRef
40.
Zurück zum Zitat Koch, M., Denzler, J., Redies, C.: \(1/f^2\) characteristics and isotropy in the fourier power spectra of visual art, cartoons, comics, mangas, and different categories of photographs. PLoS ONE 5(8), e12268 (2010) CrossRef Koch, M., Denzler, J., Redies, C.: \(1/f^2\) characteristics and isotropy in the fourier power spectra of visual art, cartoons, comics, mangas, and different categories of photographs. PLoS ONE 5(8), e12268 (2010) CrossRef
41.
Zurück zum Zitat Amirshahi, S.A., Koch, M., J.D., Redies, C. : PHOG analysis of self-similarity in aesthetic images. In: IST/SPIE Electronic Imaging (2012) Amirshahi, S.A., Koch, M., J.D., Redies, C. : PHOG analysis of self-similarity in aesthetic images. In: IST/SPIE Electronic Imaging (2012)
42.
Zurück zum Zitat Amirshahi, S.A., Redies, C., Denzler, J.: How self-similar are artworks at different levels of spatial resolution? In: Computational Aesthetics (2013) Amirshahi, S.A., Redies, C., Denzler, J.: How self-similar are artworks at different levels of spatial resolution? In: Computational Aesthetics (2013)
43.
Zurück zum Zitat Melmer, T., Amirshahi, S.A., Koch, M., Denzler, J., Redies, C.: From regular text to artistic writing and artworks: fourier statistics of images with low and high aesthetic appeal. Front. Hum. Neurosci. 7(00106) (2013) Melmer, T., Amirshahi, S.A., Koch, M., Denzler, J., Redies, C.: From regular text to artistic writing and artworks: fourier statistics of images with low and high aesthetic appeal. Front. Hum. Neurosci. 7(00106) (2013)
44.
Zurück zum Zitat Braun, J., Amirshahi, S.A., Redies, J.D.: Statistical image properties of print advertisements, visual artworks and images of architecture. Front. Psychol. 4, 808 (2013) CrossRef Braun, J., Amirshahi, S.A., Redies, J.D.: Statistical image properties of print advertisements, visual artworks and images of architecture. Front. Psychol. 4, 808 (2013) CrossRef
45.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
46.
Zurück zum Zitat Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014) Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
47.
Zurück zum Zitat Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. arXiv preprint arXiv:​1506.​02640 (2015) Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. arXiv preprint arXiv:​1506.​02640 (2015)
48.
Zurück zum Zitat Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi: 10.​1007/​978-3-319-10590-1_​53 Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014). doi: 10.​1007/​978-3-319-10590-1_​53
49.
Zurück zum Zitat Agrawal, P., Stansbury, D., Malik, J., Gallant, J.L.: Pixels to voxels: modeling visual representation in the human brain. arXiv preprint arXiv:​1407.​5104 (2014) Agrawal, P., Stansbury, D., Malik, J., Gallant, J.L.: Pixels to voxels: modeling visual representation in the human brain. arXiv preprint arXiv:​1407.​5104 (2014)
50.
Zurück zum Zitat Ramakrishnan, K., Scholte, S., Lamme, V., Smeulders, A., Ghebreab, S.: Convolutional neural networks in the brain: an FMRI study. J. Vis. 15(12), 371–371 (2015) Ramakrishnan, K., Scholte, S., Lamme, V., Smeulders, A., Ghebreab, S.: Convolutional neural networks in the brain: an FMRI study. J. Vis. 15(12), 371–371 (2015)
51.
Zurück zum Zitat Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4(1), e27 (2008) MathSciNetCrossRef Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4(1), e27 (2008) MathSciNetCrossRef
52.
Zurück zum Zitat Redies, C., Amirshahi, S.A., Koch, M., Denzler, J.: PHOG-derived aesthetic measures applied to color photographs of artworks, natural scenes and objects. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 522–531. Springer, Heidelberg (2012). doi: 10.​1007/​978-3-642-33863-2_​54 CrossRef Redies, C., Amirshahi, S.A., Koch, M., Denzler, J.: PHOG-derived aesthetic measures applied to color photographs of artworks, natural scenes and objects. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 522–531. Springer, Heidelberg (2012). doi: 10.​1007/​978-3-642-33863-2_​54 CrossRef
53.
Zurück zum Zitat Amirshahi, S.A., Denzler, J., Redies, C.: Jenaesthetics–a public dataset of paintings for aesthetic research. Technical report, Computer Vision Group. Friedrich-Schiller-University Jena (2013) Amirshahi, S.A., Denzler, J., Redies, C.: Jenaesthetics–a public dataset of paintings for aesthetic research. Technical report, Computer Vision Group. Friedrich-Schiller-University Jena (2013)
54.
Zurück zum Zitat Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 1–42 (2014) MathSciNet Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 1–42 (2014) MathSciNet
55.
Zurück zum Zitat Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems. pp. 487–495 (2014) Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems. pp. 487–495 (2014)
56.
58.
Zurück zum Zitat Mordvintsev, A., Tyka, M., Olah, C.: Inceptionism: going deeper into neural networks, google research blog. Accessed 17 June 2015 Mordvintsev, A., Tyka, M., Olah, C.: Inceptionism: going deeper into neural networks, google research blog. Accessed 17 June 2015
Metadaten
Titel
Convolutional Neural Networks as a Computational Model for the Underlying Processes of Aesthetics Perception
verfasst von
Joachim Denzler
Erik Rodner
Marcel Simon
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46604-0_60

Premium Partner