Skip to main content

2018 | OriginalPaper | Buchkapitel

Convolutional Neural Networks in Combination with Support Vector Machines for Complex Sequential Data Classification

verfasst von : Antreas Dionysiou, Michalis Agathocleous, Chris Christodoulou, Vasilis Promponas

Erschienen in: Artificial Neural Networks and Machine Learning – ICANN 2018

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Trying to extract features from complex sequential data for classification and prediction problems is an extremely difficult task. Deep Machine Learning techniques, such as Convolutional Neural Networks (CNNs), have been exclusively designed to face this class of problems. Support Vector Machines (SVMs) are a powerful technique for general classification problems, regression, and outlier detection. In this paper we present the development and implementation of an innovative by design combination of CNNs with SVMs as a solution to the Protein Secondary Structure Prediction problem, with a novel two dimensional (2D) input representation method, where Multiple Sequence Alignment profile vectors are placed one under another. This 2D input is used to train the CNNs achieving preliminary results of 80.40% per residue accuracy (Q3), which are expected to increase with the use of larger training datasets and more sophisticated ensemble methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)MathSciNetCrossRef Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)MathSciNetCrossRef
3.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classication with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates, Lake Tahoe, Nevada, Red Hook, NY (2012) Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classication with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates, Lake Tahoe, Nevada, Red Hook, NY (2012)
4.
Zurück zum Zitat Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)CrossRef Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)CrossRef
5.
Zurück zum Zitat Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N., Kruthiventi, S.S., Babu, R.V.: A taxonomy of deep convolutional neural nets for computer vision. Front. Robot. AI 2, 36 (2016)CrossRef Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N., Kruthiventi, S.S., Babu, R.V.: A taxonomy of deep convolutional neural nets for computer vision. Front. Robot. AI 2, 36 (2016)CrossRef
6.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
7.
Zurück zum Zitat LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1998) LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1998)
8.
Zurück zum Zitat Wang, S., Peng, J., Ma, J., Xu, J.: Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep. 6, 18962 (2016)CrossRef Wang, S., Peng, J., Ma, J., Xu, J.: Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep. 6, 18962 (2016)CrossRef
9.
Zurück zum Zitat Bluche, T., Ney, H., Kermorvant, C.: Feature extraction with convolutional neural networks for handwritten word recognition. In: Proceedings of the 12th IEEE International Conference on Document Analysis and Recognition, pp. 285–289 (2013) Bluche, T., Ney, H., Kermorvant, C.: Feature extraction with convolutional neural networks for handwritten word recognition. In: Proceedings of the 12th IEEE International Conference on Document Analysis and Recognition, pp. 285–289 (2013)
10.
Zurück zum Zitat Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, pp. 6645–6649 (2013) Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, pp. 6645–6649 (2013)
11.
Zurück zum Zitat Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)MATH
12.
Zurück zum Zitat Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15(11), 937–946 (1999)CrossRef Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15(11), 937–946 (1999)CrossRef
13.
Zurück zum Zitat Kountouris, P., Agathocleous, M., Promponas, V.J., Christodoulou, G., Hadjicostas, S., Vassiliades, V., Christodoulou, C.: A comparative study on filtering protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 731–739 (2012)CrossRef Kountouris, P., Agathocleous, M., Promponas, V.J., Christodoulou, G., Hadjicostas, S., Vassiliades, V., Christodoulou, C.: A comparative study on filtering protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 731–739 (2012)CrossRef
14.
Zurück zum Zitat Rost, B., Sander, C.: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins: Struct. Funct. Bioinform. 19(1), 55–72 (1994)CrossRef Rost, B., Sander, C.: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins: Struct. Funct. Bioinform. 19(1), 55–72 (1994)CrossRef
15.
Zurück zum Zitat Salamov, A.A., Solovyev, V.V.: Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J. Mol. Biol. 247(1), 11–15 (1995)CrossRef Salamov, A.A., Solovyev, V.V.: Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J. Mol. Biol. 247(1), 11–15 (1995)CrossRef
17.
Zurück zum Zitat Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)CrossRef Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)CrossRef
18.
Zurück zum Zitat Wallace, I.M., Blackshields, G., Higgins, D.: Multiple sequence alignment. Curr. Opin. Struct. Biol. 15(3), 261–266 (2005)MathSciNetCrossRef Wallace, I.M., Blackshields, G., Higgins, D.: Multiple sequence alignment. Curr. Opin. Struct. Biol. 15(3), 261–266 (2005)MathSciNetCrossRef
19.
Zurück zum Zitat Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins: Struct. Funct. Bioinform. 34(4), 508–519 (1999)CrossRef Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins: Struct. Funct. Bioinform. 34(4), 508–519 (1999)CrossRef
20.
Zurück zum Zitat Heffernan, R., Yang, Y., Paliwal, K., Zhou, Y.: Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 33(18), 2842–2849 (2017)CrossRef Heffernan, R., Yang, Y., Paliwal, K., Zhou, Y.: Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 33(18), 2842–2849 (2017)CrossRef
21.
Zurück zum Zitat Schaffer, A.A., et al.: Nucl. Acids Res. 25, 3389–3402 (1997) Schaffer, A.A., et al.: Nucl. Acids Res. 25, 3389–3402 (1997)
22.
Zurück zum Zitat Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)CrossRef Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)CrossRef
23.
Zurück zum Zitat Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)CrossRef Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)CrossRef
24.
25.
Zurück zum Zitat Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)CrossRef Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)CrossRef
26.
Zurück zum Zitat Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetMATH Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetMATH
27.
Zurück zum Zitat Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. 4(2), 26–31 (2012) Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. 4(2), 26–31 (2012)
29.
Zurück zum Zitat Kingma, D. P., Ba, J. L.: Adam: a method for stochastic optimization. In: Suthers, D., Verbert, K., Duval, E., Ochoa, X. (Eds.) Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), Leuven, Belgium, pp. 1–13. ACM, New York, NY, USA (2015) Kingma, D. P., Ba, J. L.: Adam: a method for stochastic optimization. In: Suthers, D., Verbert, K., Duval, E., Ochoa, X. (Eds.) Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), Leuven, Belgium, pp. 1–13. ACM, New York, NY, USA (2015)
30.
Zurück zum Zitat Rost, B., Sander, C., Schneider, R.: Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 235(1), 13–26 (1994)CrossRef Rost, B., Sander, C., Schneider, R.: Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 235(1), 13–26 (1994)CrossRef
31.
Zurück zum Zitat Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 163(2), 139–162 (2005)MathSciNetCrossRef Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 163(2), 139–162 (2005)MathSciNetCrossRef
32.
Zurück zum Zitat Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9(1), 77–97 (1997)CrossRef Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9(1), 77–97 (1997)CrossRef
Metadaten
Titel
Convolutional Neural Networks in Combination with Support Vector Machines for Complex Sequential Data Classification
verfasst von
Antreas Dionysiou
Michalis Agathocleous
Chris Christodoulou
Vasilis Promponas
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-030-01421-6_43