Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 11/2019

20.06.2019 | Research Article - Computer Engineering and Computer Science

Cooling Computer Chips with Cascaded and Non-cascaded Thermoelectric Devices

verfasst von: Saleh A. Al-Shehri

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermoelectric devices are currently being used in cooling and generating electricity applications. This study mainly focuses on using thermoelectric devices for both applications towards cooling down computer chips; especially, that the very large scale integration technology has reached high advancement where more than 100 million transistors can be fabricated in 1 mm2. Reducing the non-uniformity of the chip temperature is important so as to decrease the induced thermal stress in this chip and consequently reduce its failure rate. To simultaneously reduce both the non-uniformity of the temperature distribution in the chip and the power requirements for the cooling system, thermoelectric generators can be installed on the cooler chip areas to harvest electrical power from the chip wasted heat. Thereafter, the chip hotspot areas are cooled down using thermoelectric coolers that are powered by the harvested electrical power from the thermoelectric generators in order to maintain the temperatures of these hotspots to be less than or equal a certain temperature threshold. Because no additional electrical power requirement is needed to cool down the hotspots, this cooling technique is called in this paper as “sustainable self-cooling framework for cooling chip hotspots”. However, the question is that can the harvested electrical power by the thermoelectric generators be enough to power the thermoelectric coolers for different computer chips at a given operating condition? As such, one of the objectives of this paper is to develop a three-dimensional numerical and optimization model to predict the thermal and electrical performance of cascaded and non-cascaded thermoelectric generators and cascaded and non-cascaded thermoelectric coolers for cooling chip applications. Then, validate the developed model against experimental data. The results showed that the predictions of the developed model were in good agreement with the experimental to within ± 4%. After gaining confidence in the developed model, it was used for a given chip operating condition to conduct a case study for a sustainable self-cooling framework in order to answer the raised question above. The results showed that the self-cooling framework can successfully cool down the hotspot at an acceptable temperature with not only no need for additional electrical power requirements but also for reducing the non-uniformity in the chip temperature distribution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carlson, T.; Heirman, T.; Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In: Conference on High Performance Computing Networking, Storage and Analysis (Supercomputing—SC), Number 52 (2011) Carlson, T.; Heirman, T.; Eeckhout, L.: Sniper: exploring the level of abstraction for scalable and accurate parallel multi-core simulation. In: Conference on High Performance Computing Networking, Storage and Analysis (Supercomputing—SC), Number 52 (2011)
2.
Zurück zum Zitat Jejurikar, R.; Pereira, C.; Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: The 41st Annual Design Automation Conference, San Diego, CA, USA, June 7–11, (2004) Jejurikar, R.; Pereira, C.; Gupta, R.: Leakage aware dynamic voltage scaling for real-time embedded systems. In: The 41st Annual Design Automation Conference, San Diego, CA, USA, June 7–11, (2004)
3.
Zurück zum Zitat Skadron, K.; Sankaranarayanan, K.; Velusamy, S.; Tarjan, D.; Stan, M.; Huang, W.: Temperature-aware microarchitecture: modeling and implementation. ACM Trans. Archit. Code Optim. 1(1), 94–125 (2004)CrossRef Skadron, K.; Sankaranarayanan, K.; Velusamy, S.; Tarjan, D.; Stan, M.; Huang, W.: Temperature-aware microarchitecture: modeling and implementation. ACM Trans. Archit. Code Optim. 1(1), 94–125 (2004)CrossRef
4.
Zurück zum Zitat Lee, S.; Pandiyan, D.; Seo J.-S.; Wu, C.-J.: Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. In: 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 31 May–3 June (2016) Lee, S.; Pandiyan, D.; Seo J.-S.; Wu, C.-J.: Thermoelectric-based sustainable self-cooling for fine-grained processor hot spots. In: 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 31 May–3 June (2016)
5.
Zurück zum Zitat Jayakumar S.; Reda, S.: Making sense of thermoelectrics for processor thermal management and energy harvesting. In: IEEE/ACM International Symposium on Low Power Electronics and Design, Rome, Italy, 22–24 July (2015) Jayakumar S.; Reda, S.: Making sense of thermoelectrics for processor thermal management and energy harvesting. In: IEEE/ACM International Symposium on Low Power Electronics and Design, Rome, Italy, 22–24 July (2015)
6.
Zurück zum Zitat Castilhos, G.; Mandelli, M.; Ost, L.; Moraes, F.: Hierarchical energy monitoring for task mapping in many-core systems. J. Syst. Archit. 63, 80–92 (2016)CrossRef Castilhos, G.; Mandelli, M.; Ost, L.; Moraes, F.: Hierarchical energy monitoring for task mapping in many-core systems. J. Syst. Archit. 63, 80–92 (2016)CrossRef
8.
Zurück zum Zitat Snyder, G.J.; Soto, M.; Alley, R.; Koester, D.; Conner, B.: Hot spot cooling using embedded thermoelectric coolers. In: Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA (2006) Snyder, G.J.; Soto, M.; Alley, R.; Koester, D.; Conner, B.: Hot spot cooling using embedded thermoelectric coolers. In: Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Dallas, TX, USA (2006)
9.
Zurück zum Zitat Redmond, M.; Manickaraj, K.; Sullivan, O.; Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 759–767 (2013)CrossRef Redmond, M.; Manickaraj, K.; Sullivan, O.; Kumar, S.: Hotspot cooling in stacked chips using thermoelectric coolers. IEEE Trans. Compon. Packag. Manuf. Technol. 3(5), 759–767 (2013)CrossRef
10.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Efficient spreaders for cooling high power computer chips. J. Appl. Therm. Eng. 27, 1072–1088 (2007)CrossRef El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Efficient spreaders for cooling high power computer chips. J. Appl. Therm. Eng. 27, 1072–1088 (2007)CrossRef
11.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Thermal analyses of composite copper/porous graphite spreaders for immersion cooling applications. In: ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, Proceedings of InterPACK ‘05, Part A, San Francisco, CA, pp. 305–314 (2005) El-Genk, M.S.; Saber, H.H.; Parker, J.L.: Thermal analyses of composite copper/porous graphite spreaders for immersion cooling applications. In: ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging 2005, Proceedings of InterPACK ‘05, Part A, San Francisco, CA, pp. 305–314 (2005)
12.
Zurück zum Zitat Gupta, M.P.; Sayer, M.S.; Mukhopadhyay, S.; Kumar, S.: Ultrathin thermoelectric devices for on-chip peltier cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 1(9), 1395–1405 (2011)CrossRef Gupta, M.P.; Sayer, M.S.; Mukhopadhyay, S.; Kumar, S.: Ultrathin thermoelectric devices for on-chip peltier cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 1(9), 1395–1405 (2011)CrossRef
13.
Zurück zum Zitat Sullivan, O.; Gupta, M.P.; Mukhhyopadhyay, S.; Kumar, S.: Array of thermoelectric coolers for on-chip thermal management. J. Electron. Packag. 134, 1–8 (2012)CrossRef Sullivan, O.; Gupta, M.P.; Mukhhyopadhyay, S.; Kumar, S.: Array of thermoelectric coolers for on-chip thermal management. J. Electron. Packag. 134, 1–8 (2012)CrossRef
15.
Zurück zum Zitat Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009)CrossRef Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R.: On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. Nanotechnol. 4(4), 235–238 (2009)CrossRef
16.
Zurück zum Zitat Saber, H.H.; El-Genk, M.S.: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manag. 48(4), 1383–1400 (2007)CrossRef Saber, H.H.; El-Genk, M.S.: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manag. 48(4), 1383–1400 (2007)CrossRef
17.
Zurück zum Zitat Saber, H.H.; El-Genk, M.S.; Caillat, T.: Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48(2), 555–567 (2007)CrossRef Saber, H.H.; El-Genk, M.S.; Caillat, T.: Tests results of skutterudite based thermoelectric unicouples. Energy Convers. Manag. 48(2), 555–567 (2007)CrossRef
18.
Zurück zum Zitat Saber, H.H.; El-Genk, M.S.: Thermal and performance analyses of efficient radioisotope power systems. Energy Convers. Manag. 47(15–16), 2290–2307 (2006) Saber, H.H.; El-Genk, M.S.: Thermal and performance analyses of efficient radioisotope power systems. Energy Convers. Manag. 47(15–16), 2290–2307 (2006)
19.
Zurück zum Zitat Saber, H.H.; El-Genk, M.S.; Caillat, T.; Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47(2), 174–200 (2006)CrossRef Saber, H.H.; El-Genk, M.S.; Caillat, T.; Sakamoto, J.: Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Convers. Manag. 47(2), 174–200 (2006)CrossRef
20.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.: Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energy Convers. Manag. 46(7–8), 1083–1105 (2005)CrossRef El-Genk, M.S.; Saber, H.H.: Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems. Energy Convers. Manag. 46(7–8), 1083–1105 (2005)CrossRef
21.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.; Caillat, T.: Efficient segmented thermoelectric for space power applications. Energy Convers. Manag. 44(11), 1755–1772 (2003)CrossRef El-Genk, M.S.; Saber, H.H.; Caillat, T.: Efficient segmented thermoelectric for space power applications. Energy Convers. Manag. 44(11), 1755–1772 (2003)CrossRef
22.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.: High efficiency segmented thermoelectric for operation between 973 K and 300 K. Energy Convers. Manag. 44(7), 1069–2003 (2003)CrossRef El-Genk, M.S.; Saber, H.H.: High efficiency segmented thermoelectric for operation between 973 K and 300 K. Energy Convers. Manag. 44(7), 1069–2003 (2003)CrossRef
23.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.: Parametric and optimization analyses of cascaded thermoelectric-advanced radioisotope power systems with 4-GPH bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 55, pp. 55-1–55-13. CRC Press, Taylor & Francis Group. ISBN 0-8493-2264-2 (2006) El-Genk, M.S.; Saber, H.H.: Parametric and optimization analyses of cascaded thermoelectric-advanced radioisotope power systems with 4-GPH bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 55, pp. 55-1–55-13. CRC Press, Taylor & Francis Group. ISBN 0-8493-2264-2 (2006)
24.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.: Performance and mass estimates of cascaded thermoelectric modules—advanced radioisotope power systems (CTM-ARPSs) with 4-GPHS bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 54, pp. 54-1–54-14. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006) El-Genk, M.S.; Saber, H.H.: Performance and mass estimates of cascaded thermoelectric modules—advanced radioisotope power systems (CTM-ARPSs) with 4-GPHS bricks. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 54, pp. 54-1–54-14. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006)
25.
Zurück zum Zitat El-Genk, M.S.; Saber, H.H.: Modeling and optimization of segmented thermoelectric generators for terrestrial and space applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 43, pp. 43-1–43-13. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006) El-Genk, M.S.; Saber, H.H.: Modeling and optimization of segmented thermoelectric generators for terrestrial and space applications. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macro to Nano, Chapter 43, pp. 43-1–43-13. CRC Press, Taylor & Francis Group, ISBN 0-8493-2264-2 (2006)
26.
Zurück zum Zitat Rajpoot, S.C.; Mishra, G.; Manser, R.S.; Sahu, U.; Rajput, S.S.: Analysis of power generation from exhaust gas on 4 stroke 4 cylinder petrol engine using thermoelectric generator. GRD J. Glob. Res. Dev. J. Eng. 2(7), 97–108 (2017) Rajpoot, S.C.; Mishra, G.; Manser, R.S.; Sahu, U.; Rajput, S.S.: Analysis of power generation from exhaust gas on 4 stroke 4 cylinder petrol engine using thermoelectric generator. GRD J. Glob. Res. Dev. J. Eng. 2(7), 97–108 (2017)
29.
Zurück zum Zitat Thepmanee, T.; Julsereewong P.; Taratanaphol, N.: Waste-heat thermoelectric power source for industrial wireless transmitters. In: IEEE Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chiang Mai, Thailand (2010) Thepmanee, T.; Julsereewong P.; Taratanaphol, N.: Waste-heat thermoelectric power source for industrial wireless transmitters. In: IEEE Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chiang Mai, Thailand (2010)
30.
Zurück zum Zitat Carlson, E.; Strunz, K.; Otis, B.: A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid State Circuits 45(4), 741–750 (2010)CrossRef Carlson, E.; Strunz, K.; Otis, B.: A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid State Circuits 45(4), 741–750 (2010)CrossRef
31.
Zurück zum Zitat Ramadass, Y.; Chandrakasan, A.: A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2010)CrossRef Ramadass, Y.; Chandrakasan, A.: A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid State Circuits 46(1), 333–341 (2010)CrossRef
32.
Zurück zum Zitat ITRS, International Technology Roadmap for Semiconductors (2004) ITRS, International Technology Roadmap for Semiconductors (2004)
33.
Zurück zum Zitat Knickerbocker, J.U.; Pompeo, F.L.; Tai, A.F.; et al.: An advanced multichip module (MCM) for high-performance UNIX servers. IBM J. Res. Dev. 46(6), 779–804 (2002)CrossRef Knickerbocker, J.U.; Pompeo, F.L.; Tai, A.F.; et al.: An advanced multichip module (MCM) for high-performance UNIX servers. IBM J. Res. Dev. 46(6), 779–804 (2002)CrossRef
34.
Zurück zum Zitat Knickerbocker, J.U.; Andry, P.S.; Dang, B.; et al.: Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008)CrossRef Knickerbocker, J.U.; Andry, P.S.; Dang, B.; et al.: Three-dimensional silicon integration. IBM J. Res. Dev. 52(6), 553–569 (2008)CrossRef
36.
Zurück zum Zitat Chin-Hsiang Cheng, C.-H.; Huang, S.-Y.; Cheng, T.-C.: A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 53, 2001–2011 (2010)CrossRefMATH Chin-Hsiang Cheng, C.-H.; Huang, S.-Y.; Cheng, T.-C.: A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 53, 2001–2011 (2010)CrossRefMATH
37.
Zurück zum Zitat Li, W.; Paul, M.C.; Siviter, J.; Montecucco, A.; Knox, A.R.; Sweet, T.; Min, G.; Baig, H.; Mallick, T.K.; Han, G.; Gregory, D.H.; Azough, F.; Freer, R.: Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164–175 (2016)CrossRef Li, W.; Paul, M.C.; Siviter, J.; Montecucco, A.; Knox, A.R.; Sweet, T.; Min, G.; Baig, H.; Mallick, T.K.; Han, G.; Gregory, D.H.; Azough, F.; Freer, R.: Thermal performance of two heat exchangers for thermoelectric generators. Case Stud. Therm. Eng. 8, 164–175 (2016)CrossRef
38.
Zurück zum Zitat LaClair, T.J.; Mudawar, I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Transf. 43, 3937–3952 (2000)CrossRefMATH LaClair, T.J.; Mudawar, I.: Thermal transients in a capillary evaporator prior to the initiation of boiling. Int. J. Heat Mass Transf. 43, 3937–3952 (2000)CrossRefMATH
39.
Zurück zum Zitat Li, S.; Ahn, J.; Strong, R.; Brockman, J.; Tullsen, D.; Jouppi, N.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec 12–16, 2009, New York, NY (2009) Li, S.; Ahn, J.; Strong, R.; Brockman, J.; Tullsen, D.; Jouppi, N.: McPAT: an integrated power, area, and timing modeling framework for multicore and manycore architectures. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Dec 12–16, 2009, New York, NY (2009)
Metadaten
Titel
Cooling Computer Chips with Cascaded and Non-cascaded Thermoelectric Devices
verfasst von
Saleh A. Al-Shehri
Publikationsdatum
20.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 11/2019
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-03862-2

Weitere Artikel der Ausgabe 11/2019

Arabian Journal for Science and Engineering 11/2019 Zur Ausgabe

Research Article - Computer Engineering and Computer Science

On Some Improved Versions of Whale Optimization Algorithm

Research Article - Computer Engineering and Computer Science

Hybrid Filter–Wrapper Feature Selection Method for Sentiment Classification

Research Article - Computer Engineering and Computer Science

Hybrid Cascade Forward Neural Network with Elman Neural Network for Disease Prediction

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.