Skip to main content
Erschienen in:
Buchtitelbild

2021 | OriginalPaper | Buchkapitel

Cooperative Communication Techniques in Wireless-Powered Backscatter Communication: Preambles and Technical Perspective

verfasst von : Muhammad Ali Jamshed, Haris Pervaiz, Syed Hassan Ahmed, Atm Shafiul Alam

Erschienen in: Wireless-Powered Backscatter Communications for Internet of Things

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

User cooperation is considered as a key enabling technology in wireless-powered backscatter communication (BaKcom) to improve the energy efficiency of the overall network while comparing to a traditional non-cooperative system. In light of the literature on BaKcom, most researchers consider such scenarios, where they backscatter the information directly to the receiver. The channel fading limits the system throughput between each transmitter and receiver pair. The limitation in system throughput motivates us to provide an introductory guideline and technical perspective of cooperative communication in the backscatter scenario. While this chapter mainly focuses on the technical aspects and potential applications of cooperative BaKcom, a brief historical perspective of cooperation techniques in general for wireless communications along with their implementation details, applications and research challenges is described. Section  2 of this chapter focuses on the role and uses of low powered Internet of Things (IoT) devices in future wireless communications and shows how BaKcom technology benefits such devices. In Section  3, we start our discussion by designing a system model and explaining the basic working of cooperative communication in backscatter scenarios. Based on the available literature, some potential cooperative techniques are provided, along with their comparative analysis. Finally, Section  4 concludes the chapter by providing future research directions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cisco Visual Networking Index, Global mobile data traffic forecast update, 2016–2021 white paper, Cisco: San Jose, CA, USA Cisco Visual Networking Index, Global mobile data traffic forecast update, 2016–2021 white paper, Cisco: San Jose, CA, USA
2.
Zurück zum Zitat Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)CrossRef Nosratinia, A., Hunter, T.E., Hedayat, A.: Cooperative communication in wireless networks. IEEE Commun. Mag. 42(10), 74–80 (2004)CrossRef
3.
Zurück zum Zitat Liu, K.R., Sadek, A.K., Su, W., Kwasinski, A.: Cooperative Communications and Networking. Cambridge University Press (2009) Liu, K.R., Sadek, A.K., Su, W., Kwasinski, A.: Cooperative Communications and Networking. Cambridge University Press (2009)
4.
Zurück zum Zitat Naqvi, S.A.R., Hassan, S.A., Pervaiz, H., Ni, Q., Musavian, L.: Self-adaptive power control mechanism in D2D enabled hybrid cellular network with mmWave small cells: an optimization approach. In: IEEE Globecom Workshops (GC Wkshps), vol. 2016, pp. 1–6. IEEE (2016) Naqvi, S.A.R., Hassan, S.A., Pervaiz, H., Ni, Q., Musavian, L.: Self-adaptive power control mechanism in D2D enabled hybrid cellular network with mmWave small cells: an optimization approach. In: IEEE Globecom Workshops (GC Wkshps), vol. 2016, pp. 1–6. IEEE (2016)
5.
Zurück zum Zitat Sun, Y., Yue, D.-W.: Special issue on cooperative wireless and mobile communications. IET Commun. 7(17), 1881–1882 (2013)CrossRef Sun, Y., Yue, D.-W.: Special issue on cooperative wireless and mobile communications. IET Commun. 7(17), 1881–1882 (2013)CrossRef
6.
Zurück zum Zitat Zhong, Z.-D., Ai, B., Zhu, G., Wu, H., Xiong, L., Wang, F.-G., Lei, L., Ding, J.-W., Guan, K., He, R.-S.: Dedicated Mobile Communications for High-Speed Railway. Springer (2018) Zhong, Z.-D., Ai, B., Zhu, G., Wu, H., Xiong, L., Wang, F.-G., Lei, L., Ding, J.-W., Guan, K., He, R.-S.: Dedicated Mobile Communications for High-Speed Railway. Springer (2018)
7.
Zurück zum Zitat Pervaiz, H., Musavian, L., Ni, Q.: Area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In: 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 1178–1183. IEEE (2015) Pervaiz, H., Musavian, L., Ni, Q.: Area energy and area spectrum efficiency trade-off in 5G heterogeneous networks. In: 2015 IEEE International Conference on Communication Workshop (ICCW), pp. 1178–1183. IEEE (2015)
8.
Zurück zum Zitat Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inform. Theory 25(5), 572–584 (1979)MathSciNetCrossRef Cover, T., Gamal, A.E.: Capacity theorems for the relay channel. IEEE Trans. Inform. Theory 25(5), 572–584 (1979)MathSciNetCrossRef
9.
Zurück zum Zitat Sendonaris, A., Erkip, E., Aazhang, B.: Increasing uplink capacity via user cooperation diversity. In: Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), p. 156. IEEE (1998) Sendonaris, A., Erkip, E., Aazhang, B.: Increasing uplink capacity via user cooperation diversity. In: Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No. 98CH36252), p. 156. IEEE (1998)
10.
Zurück zum Zitat Ahmed, E., Gharavi, H.: Cooperative vehicular networking: a survey. IEEE Trans. Intell. Transp. Syst. 19(3), 996–1014 (2018)CrossRef Ahmed, E., Gharavi, H.: Cooperative vehicular networking: a survey. IEEE Trans. Intell. Transp. Syst. 19(3), 996–1014 (2018)CrossRef
11.
Zurück zum Zitat Zhuang, W., Ismail, M.: Cooperation in wireless communication networks. IEEE Wirel. Commun. 19(2), 10–20 (2012)CrossRef Zhuang, W., Ismail, M.: Cooperation in wireless communication networks. IEEE Wirel. Commun. 19(2), 10–20 (2012)CrossRef
12.
Zurück zum Zitat Zhao, Y., Adve, R., Lim, T.J.: Symbol error rate of selection amplify-and-forward relay systems. IEEE Commun. Lett. 10(11), 757–759 (2006)CrossRef Zhao, Y., Adve, R., Lim, T.J.: Symbol error rate of selection amplify-and-forward relay systems. IEEE Commun. Lett. 10(11), 757–759 (2006)CrossRef
13.
Zurück zum Zitat Zhou, Q.F., Li, Y., Lau, F.C., Vucetic, B.: Decode-and-forward two-way relaying with network coding and opportunistic relay selection. IEEE Trans. Commun. 58(11), 3070–3076 (2010)CrossRef Zhou, Q.F., Li, Y., Lau, F.C., Vucetic, B.: Decode-and-forward two-way relaying with network coding and opportunistic relay selection. IEEE Trans. Commun. 58(11), 3070–3076 (2010)CrossRef
14.
Zurück zum Zitat Laneman, J.N., Tse, D.N., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory 50(12), 3062–3080 (2004)MathSciNetCrossRef Laneman, J.N., Tse, D.N., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inform. Theory 50(12), 3062–3080 (2004)MathSciNetCrossRef
15.
Zurück zum Zitat Ikki, S.S., Ahmed, M.H.: Performance analysis of incremental-relaying cooperative-diversity networks over rayleigh fading channels. IET Commun. 5(3), 337–349 (2011)MathSciNetCrossRef Ikki, S.S., Ahmed, M.H.: Performance analysis of incremental-relaying cooperative-diversity networks over rayleigh fading channels. IET Commun. 5(3), 337–349 (2011)MathSciNetCrossRef
16.
Zurück zum Zitat Hunter, T.E., Nosratinia, A.: Cooperation diversity through coding. In: Proceedings IEEE International Symposium on Information Theory, p. 220. IEEE (2002) Hunter, T.E., Nosratinia, A.: Cooperation diversity through coding. In: Proceedings IEEE International Symposium on Information Theory, p. 220. IEEE (2002)
17.
Zurück zum Zitat Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity-part I: system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)CrossRef Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity-part I: system description. IEEE Trans. Commun. 51(11), 1927–1938 (2003)CrossRef
18.
Zurück zum Zitat Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Trans. Commun. 51(11), 1939–1948 (2003) Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Trans. Commun. 51(11), 1939–1948 (2003)
20.
Zurück zum Zitat Chen, J., Hu, K., Wang, Q., Sun, Y., Shi, Z., He, S.: Narrowband internet of things: implementations and applications. IEEE Internet of Things J. 4(6), 2309–2314 (2017)CrossRef Chen, J., Hu, K., Wang, Q., Sun, Y., Shi, Z., He, S.: Narrowband internet of things: implementations and applications. IEEE Internet of Things J. 4(6), 2309–2314 (2017)CrossRef
21.
Zurück zum Zitat Li, Y., Chi, K., Chen, H., Wang, Z., Zhu, Y.: Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things J. 5(3), 1474–1484 (2018)CrossRef Li, Y., Chi, K., Chen, H., Wang, Z., Zhu, Y.: Narrowband Internet of Things systems with opportunistic D2D communication. IEEE Internet of Things J. 5(3), 1474–1484 (2018)CrossRef
22.
Zurück zum Zitat Nauman, A., Jamshed, M.A., Ahmad, Y., Ali, R., Zikria, Y.B., Kim, S.W.: An intelligent deterministic D2D communication in narrow-band Internet of Things. In: 15th International Wireless Communications & Mobile Computing Conference (IWCMC), vol. 2019, pp. 2111–2115. IEEE (2019) Nauman, A., Jamshed, M.A., Ahmad, Y., Ali, R., Zikria, Y.B., Kim, S.W.: An intelligent deterministic D2D communication in narrow-band Internet of Things. In: 15th International Wireless Communications & Mobile Computing Conference (IWCMC), vol. 2019, pp. 2111–2115. IEEE (2019)
23.
Zurück zum Zitat Islam, S.R., Avazov, N., Dobre, O.A., Kwak, K.-S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2016)CrossRef Islam, S.R., Avazov, N., Dobre, O.A., Kwak, K.-S.: Power-domain non-orthogonal multiple access (NOMA) in 5G systems: potentials and challenges. IEEE Commun. Surv. Tutor. 19(2), 721–742 (2016)CrossRef
24.
Zurück zum Zitat Kim, J.-B., Lee, I.-H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19(11), 2037–2040 (2015)CrossRef Kim, J.-B., Lee, I.-H.: Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Commun. Lett. 19(11), 2037–2040 (2015)CrossRef
25.
Zurück zum Zitat Ding, Z., Dai, H., Poor, H.V.: Relay selection for cooperative NOMA. IEEE Wirel. Communi. Lett. 5(4), 416–419 (2016)CrossRef Ding, Z., Dai, H., Poor, H.V.: Relay selection for cooperative NOMA. IEEE Wirel. Communi. Lett. 5(4), 416–419 (2016)CrossRef
26.
Zurück zum Zitat Ehsan, S., Hamdaoui, B.: A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 14(2), 265–278 (2011)CrossRef Ehsan, S., Hamdaoui, B.: A survey on energy-efficient routing techniques with QoS assurances for wireless multimedia sensor networks. IEEE Commun. Surv. Tutor. 14(2), 265–278 (2011)CrossRef
27.
Zurück zum Zitat Jamshed, M.A., Amjad, O., Zeydan, E.: Multicore energy efficient scheduling with energy harvesting for wireless multimedia sensor networks. In: International Multi-topic Conference (INMIC), vol. 2017, pp. 1–5. IEEE (2017) Jamshed, M.A., Amjad, O., Zeydan, E.: Multicore energy efficient scheduling with energy harvesting for wireless multimedia sensor networks. In: International Multi-topic Conference (INMIC), vol. 2017, pp. 1–5. IEEE (2017)
28.
Zurück zum Zitat Jamshed, M.A., Amjad, O., Khan, M.F.: Energy optimized routing with directional antennas and tagging for multimedia sensor networks. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–5. IEEE (2018) Jamshed, M.A., Amjad, O., Khan, M.F.: Energy optimized routing with directional antennas and tagging for multimedia sensor networks. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1–5. IEEE (2018)
29.
Zurück zum Zitat Aishwarya, M., Kirthiga, S.: Relay assisted cooperative communication for wireless sensor networks. In: 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6. IEEE (2018) Aishwarya, M., Kirthiga, S.: Relay assisted cooperative communication for wireless sensor networks. In: 2018 Second International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6. IEEE (2018)
30.
Zurück zum Zitat Mansourkiaie, F., Ahmed, M.H.: Per-node traffic load in cooperative wireless sensor networks. IEEE Commun. Lett. 20(2), 344–347 (2015)CrossRef Mansourkiaie, F., Ahmed, M.H.: Per-node traffic load in cooperative wireless sensor networks. IEEE Commun. Lett. 20(2), 344–347 (2015)CrossRef
32.
Zurück zum Zitat Tran, T.X., Hajisami, A., Pompili, D.: Cooperative hierarchical caching in 5G cloud radio access networks. IEEE Netw. 31(4), 35–41 (2017)CrossRef Tran, T.X., Hajisami, A., Pompili, D.: Cooperative hierarchical caching in 5G cloud radio access networks. IEEE Netw. 31(4), 35–41 (2017)CrossRef
33.
Zurück zum Zitat Stockman, H.: Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)CrossRef Stockman, H.: Communication by means of reflected power. Proc. IRE 36(10), 1196–1204 (1948)CrossRef
34.
Zurück zum Zitat Zhang, P., Gummeson, J., Ganesan, D.: Blink: a high throughput link layer for backscatter communication. In: Proceedings of the 10th International Conference on Mobile systems, Applications, and Services, pp. 99–112. ACM (2012) Zhang, P., Gummeson, J., Ganesan, D.: Blink: a high throughput link layer for backscatter communication. In: Proceedings of the 10th International Conference on Mobile systems, Applications, and Services, pp. 99–112. ACM (2012)
35.
Zurück zum Zitat Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter: wireless communication out of thin air. In: ACM SIGCOMM Computer Communication Review, vol. 43, pp. 39–50. ACM (2013) Liu, V., Parks, A., Talla, V., Gollakota, S., Wetherall, D., Smith, J.R.: Ambient backscatter: wireless communication out of thin air. In: ACM SIGCOMM Computer Communication Review, vol. 43, pp. 39–50. ACM (2013)
36.
Zurück zum Zitat Parks, A.N., Liu, A., Gollakota, S., Smith, J.R.: Turbocharging ambient backscatter communication. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 619–630. ACM (2014) Parks, A.N., Liu, A., Gollakota, S., Smith, J.R.: Turbocharging ambient backscatter communication. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 619–630. ACM (2014)
37.
Zurück zum Zitat Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. Tutor. 20(4), 2889–2922 (2018)CrossRef Van Huynh, N., Hoang, D.T., Lu, X., Niyato, D., Wang, P., Kim, D.I.: Ambient backscatter communications: a contemporary survey. IEEE Commun. Surv. Tutor. 20(4), 2889–2922 (2018)CrossRef
38.
Zurück zum Zitat Lyu, B., Hoang, D.T., Yang, Z.: User cooperation in wireless-powered backscatter communication networks. IEEE Wirel. Commun. Lett. 8(2), 632–635 (2019)CrossRef Lyu, B., Hoang, D.T., Yang, Z.: User cooperation in wireless-powered backscatter communication networks. IEEE Wirel. Commun. Lett. 8(2), 632–635 (2019)CrossRef
40.
Zurück zum Zitat Yang, G., Zhang, Q., Liang, Y.-C.: Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet of Things J. 5(2), 1116–1130 (2018)CrossRef Yang, G., Zhang, Q., Liang, Y.-C.: Cooperative ambient backscatter communications for green Internet-of-Things. IEEE Internet of Things J. 5(2), 1116–1130 (2018)CrossRef
41.
Zurück zum Zitat Kellogg, B., Talla, V., Gollakota, S., Smith, J.R.: Passive Wi-Fi: bringing low power to Wi-Fi transmissions. In: 13th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 16), pp. 151–164 (2016) Kellogg, B., Talla, V., Gollakota, S., Smith, J.R.: Passive Wi-Fi: bringing low power to Wi-Fi transmissions. In: 13th \(\{\)USENIX\(\}\) Symposium on Networked Systems Design and Implementation (\(\{\)NSDI\(\}\) 16), pp. 151–164 (2016)
42.
Zurück zum Zitat Liu, W., Huang, K., Zhou, X., Durrani, S.: Next generation backscatter communication: systems, techniques, and applications. EURASIP J. Wirel. Commun. Network. 2019(1), 69 (2019)CrossRef Liu, W., Huang, K., Zhou, X., Durrani, S.: Next generation backscatter communication: systems, techniques, and applications. EURASIP J. Wirel. Commun. Network. 2019(1), 69 (2019)CrossRef
44.
Zurück zum Zitat Munir, S.W., Amjad, O., Zeydan, E., Ercan, A.Ö.: Optimization and analysis of WLAN RF energy harvesting system architecture. In: International Symposium on Wireless Communication Systems (ISWCS), vol. 2016, pp. 429–433. IEEE (2016) Munir, S.W., Amjad, O., Zeydan, E., Ercan, A.Ö.: Optimization and analysis of WLAN RF energy harvesting system architecture. In: International Symposium on Wireless Communication Systems (ISWCS), vol. 2016, pp. 429–433. IEEE (2016)
45.
Zurück zum Zitat Amjad, O., Munir S.W., Imeci, S.T., Ercan, A.Ö.: Design and implementation of dual band microstrip patch antenna for WLAN energy harvesting system. Appl. Comput. Electromagn. Soc. J (2018) Amjad, O., Munir S.W., Imeci, S.T., Ercan, A.Ö.: Design and implementation of dual band microstrip patch antenna for WLAN energy harvesting system. Appl. Comput. Electromagn. Soc. J (2018)
46.
Zurück zum Zitat Tentzeris, M.M., Kawahara, Y.: Novel energy harvesting technologies for ICT applications. In: International Symposium on Applications and the Internet, vol. 2008, pp. 373–376. IEEE (2008) Tentzeris, M.M., Kawahara, Y.: Novel energy harvesting technologies for ICT applications. In: International Symposium on Applications and the Internet, vol. 2008, pp. 373–376. IEEE (2008)
47.
Zurück zum Zitat Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15(4), 108–120 (2014)CrossRef Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15(4), 108–120 (2014)CrossRef
48.
Zurück zum Zitat Bi, S., Ho, C.K., Zhang, R.: Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2015)CrossRef Bi, S., Ho, C.K., Zhang, R.: Wireless powered communication: opportunities and challenges. IEEE Commun. Mag. 53(4), 117–125 (2015)CrossRef
49.
Zurück zum Zitat Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.: Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutor. 20(1), 264–302 (2017)CrossRef Perera, T.D.P., Jayakody, D.N.K., Sharma, S.K., Chatzinotas, S., Li, J.: Simultaneous wireless information and power transfer (SWIPT): recent advances and future challenges. IEEE Commun. Surv. Tutor. 20(1), 264–302 (2017)CrossRef
50.
Zurück zum Zitat Zhang, P., Hu, P., Pasikanti, V., Ganesan, D.: Ekhonet: high speed ultra low-power backscatter for next generation sensors. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 557–568. ACM (2014) Zhang, P., Hu, P., Pasikanti, V., Ganesan, D.: Ekhonet: high speed ultra low-power backscatter for next generation sensors. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, pp. 557–568. ACM (2014)
51.
Zurück zum Zitat Lyu, B., Yang, Z., Guo, H., Tian, F., Gui, G.: Relay cooperation enhanced backscatter communication for Internet-of-Things. IEEE Internet of Things J. 6(2), 2860–2871 (2018)CrossRef Lyu, B., Yang, Z., Guo, H., Tian, F., Gui, G.: Relay cooperation enhanced backscatter communication for Internet-of-Things. IEEE Internet of Things J. 6(2), 2860–2871 (2018)CrossRef
52.
Zurück zum Zitat Bharadia, D., Joshi, K.R., Kotaru, M., Katti, S.: Backfi: high throughput WiFi backscatter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 283–296 (2015)CrossRef Bharadia, D., Joshi, K.R., Kotaru, M., Katti, S.: Backfi: high throughput WiFi backscatter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 283–296 (2015)CrossRef
53.
Zurück zum Zitat Liu, T., Qu, X., Tan, W., Cheng, Y.: An energy efficient cooperative communication scheme in ambient RF powered sensor networks. IEEE Access 7, 86545–86554 (2019)CrossRef Liu, T., Qu, X., Tan, W., Cheng, Y.: An energy efficient cooperative communication scheme in ambient RF powered sensor networks. IEEE Access 7, 86545–86554 (2019)CrossRef
54.
Zurück zum Zitat Haider, S.K., Jamshed, M.A., Jiang, A., Pervaiz, H.: An energy efficient cluster-heads re-usability mechanism for wireless sensor networks. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019) Haider, S.K., Jamshed, M.A., Jiang, A., Pervaiz, H.: An energy efficient cluster-heads re-usability mechanism for wireless sensor networks. In: 2019 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1–6. IEEE (2019)
55.
Zurück zum Zitat Wang, W., Wang, Q.: Price the QoE, not the data: SMP-economic resource allocation in wireless multimedia Internet of Things. IEEE Commun. Mag. 56(9), 74–79 (2018)CrossRef Wang, W., Wang, Q.: Price the QoE, not the data: SMP-economic resource allocation in wireless multimedia Internet of Things. IEEE Commun. Mag. 56(9), 74–79 (2018)CrossRef
Metadaten
Titel
Cooperative Communication Techniques in Wireless-Powered Backscatter Communication: Preambles and Technical Perspective
verfasst von
Muhammad Ali Jamshed
Haris Pervaiz
Syed Hassan Ahmed
Atm Shafiul Alam
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-46201-7_1