Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Coordination Bonding: Electronic Structure and Properties

verfasst von : Fanica Cimpoesu, Marilena Ferbinteanu

Erschienen in: Structural Chemistry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Coordination compounds, alternatively called complexes, are systems where metal ions (d-type transition elements or the f-elements, lanthanides and actinides) are linked to molecules that may have standalone identity (the ligands), showing local connectivities (coordination numbers) larger than those presumable by the valence rules. The supplement of linkage capabilities is realized by weak bonding interactions, ionic and partly covalent. This situation generates special properties, the loosely bonded “nervous” electrons causing various magnetic manifestations and electronic transitions in visible or near-infrared, strongly influenced by the coordination environment and electron counts of metal ions, as well as by the long-range interactions. The specifics of this bonding regime are treated with models belonging to the Ligand Field Theory, originating from the pre-computational era, but keeping their insightful benefits also in modern times, as tools for interpreting calculations in a phenomenological way. There are several classes of ligand field (LF) models, the classical paradigm being based on the expansion of effective Hamiltonian in spherical harmonics, as operators having numeric cofactors as parameters. This construct is a perennial, possible everlasting idea, exploiting in elegant manner the symmetry factors. Other versions, such as the so-called Angular Overlap Model (AOM) are closer to the chemist’s idea about the bonding capabilities of ligands. The computation of coordination systems is often a non-trivial task, the mastering of ligand field ideas offering useful guidelines in setting the input and reading the output. The coordination bonding regime is also encountered in many solid state systems (oxides, halides), the intrinsic electronic structure features of the metal ions and their interaction with the environment being the basis of important current or future-targeted applications in the material sciences. An excursus in this problematic is drawn in this chapter. If the reader is a novice to ligand field concepts, or in the calculations serving in this domain, the presented exposition will provide helpful clues and heuristic perspectives for an illuminating initiation. For instance, for the AOM in octahedral field, we give a shortcut proof of the master formula, not demanding the full assimilation of the technique. The difficulties of multi-parametric LF in terms of spherical harmonic operators are circumvented with picturesque color maps of the LF potential on the coordination sphere. When the reader knows the principles of LF, but is longing to go to the next level, of mastering the underlying algebra, this chapter has things to offer. The computer algebra insets help very much to reach high level exercises and proofs. The same goes for people acquainted with quantum calculations, and who may be interested to know hints and tricks related with the specifics and peculiarities of the electronic structure in d- and f-based complexes, conducting numeric experiments in the spirit of the LF paradigm. Besides, we introduce, as application phenomena worth knowing, inorganic thermochromism and magnetic anisotropy. Finally, we hope that even the readers with extensive expertise in LF algebra or state-of-the-art ab initio methods, will find here original clues, interpretations, and developments. Along with basic exposition of various computational techniques (CASSCF, DFT, TD-DFT), we explain insightful handling, marking the limits of interpretations (e.g. the TD-DFT inability for certain LF problems). A special emphasis is put on the first-principles modeling of the f-type complexes, where the authors brought pioneering contributions in the methodology of multi-configuration calculations applied to such systems. The challenge to be faced is the non-aufbaunature of the f shell of the lanthanide ions in complexes and lattices, which makes problematic the routine approach. Original interpretations and methodologies are also highlighted for the issue of magnetic anisotropy, an important manifestation resulted from the imbrication of the ligand field and spin-orbit effects. The phenomenological modeling and the ab initio calculations are placed on equal footing in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abragam A, Bleaney B (1970) Electron paramagnetic resonance. Clarendon Press, Oxford Abragam A, Bleaney B (1970) Electron paramagnetic resonance. Clarendon Press, Oxford
Zurück zum Zitat Adell B (1952) Die Geschwindigkeit der Rückwandlung von bestrahltem festem Nitropentaamminekobalt. Z Anorg Allg Chem 271:49–64CrossRef Adell B (1952) Die Geschwindigkeit der Rückwandlung von bestrahltem festem Nitropentaamminekobalt. Z Anorg Allg Chem 271:49–64CrossRef
Zurück zum Zitat Adell B (1971) Uber die Einwirkung von Licht auf einige feste Salze vom Typus trans-[Co(en)2(NO2)(X)]Y. Z Anorg Allg Chem 386:122–128CrossRef Adell B (1971) Uber die Einwirkung von Licht auf einige feste Salze vom Typus trans-[Co(en)2(NO2)(X)]Y. Z Anorg Allg Chem 386:122–128CrossRef
Zurück zum Zitat Anderson DN, Willet RD (1974) The crystal structure of bis (isopropylammonium) tetrachlorocuprate (II). Inorg Chim Acta 8:167–175CrossRef Anderson DN, Willet RD (1974) The crystal structure of bis (isopropylammonium) tetrachlorocuprate (II). Inorg Chim Acta 8:167–175CrossRef
Zurück zum Zitat Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488CrossRef Andersson K, Malmqvist PA, Roos BO, Sadlej AJ, Wolinski K (1990) Second-order perturbation theory with a CASSCF reference function. J Phys Chem 94:5483–5488CrossRef
Zurück zum Zitat Angeli C, Bories B, Cavallini A, Cimiraglia R (2006) Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. J Chem Phys 124:054108CrossRef Angeli C, Bories B, Cavallini A, Cimiraglia R (2006) Third-order multireference perturbation theory: the n-electron valence state perturbation-theory approach. J Chem Phys 124:054108CrossRef
Zurück zum Zitat Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114:10252–10264CrossRef Angeli C, Cimiraglia R, Evangelisti S, Leininger T, Malrieu JP (2001) Introduction of n-electron valence states for multireference perturbation theory. J Chem Phys 114:10252–10264CrossRef
Zurück zum Zitat Atanasov M, Daul CA, Penka Fowe E (2005) Chemical bonding in molecules and complexes containing d-elements based on DFT. Monatsh Chem 136:925–963CrossRef Atanasov M, Daul CA, Penka Fowe E (2005) Chemical bonding in molecules and complexes containing d-elements based on DFT. Monatsh Chem 136:925–963CrossRef
Zurück zum Zitat Bailar JC, Busch DH (eds) (1956) The chemistry of coordination compounds. Reinhold, New York Bailar JC, Busch DH (eds) (1956) The chemistry of coordination compounds. Reinhold, New York
Zurück zum Zitat Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2388CrossRef Benelli C, Gatteschi D (2002) Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem Rev 102:2369–2388CrossRef
Zurück zum Zitat Bersuker IB (1984) The Jahn Teller effect and vibronic interactions in modern chemistry. Plenum, New YorkCrossRef Bersuker IB (1984) The Jahn Teller effect and vibronic interactions in modern chemistry. Plenum, New YorkCrossRef
Zurück zum Zitat Bloomquist DR, Pressprich MR, Willett RD (1988) Thermochromism in copper(II) halide salts. 4. Bis (diethylammonium) tetrachlorocuprate (II), structure of the high-temperature phase and physical characterization of its two phases. J Am Chem Soc 110:7391–7398CrossRef Bloomquist DR, Pressprich MR, Willett RD (1988) Thermochromism in copper(II) halide salts. 4. Bis (diethylammonium) tetrachlorocuprate (II), structure of the high-temperature phase and physical characterization of its two phases. J Am Chem Soc 110:7391–7398CrossRef
Zurück zum Zitat Bloomquist DR, Willett RD (1981) Structures of two phases of bis (diethylammonium) tetrachlorozincate hydrate. Acta Crystallogr B 37:1353–1356CrossRef Bloomquist DR, Willett RD (1981) Structures of two phases of bis (diethylammonium) tetrachlorozincate hydrate. Acta Crystallogr B 37:1353–1356CrossRef
Zurück zum Zitat Bloomquist DR, Willet RD (1982) Thermochromic phase transitions in transition metal salts. Coord Chem Rev 47:125–164CrossRef Bloomquist DR, Willet RD (1982) Thermochromic phase transitions in transition metal salts. Coord Chem Rev 47:125–164CrossRef
Zurück zum Zitat Branzoli F, Carretta P, Filibian M, Zoppellaro G, Graf MJ, Galan-Mascaros JR, Fuhr O, Brink S, Ruben M (2009) Spin dynamics in the negatively charged Terbium (III) bis-phthalocyaninato complex. J Am Chem Soc 131:4387–4396CrossRef Branzoli F, Carretta P, Filibian M, Zoppellaro G, Graf MJ, Galan-Mascaros JR, Fuhr O, Brink S, Ruben M (2009) Spin dynamics in the negatively charged Terbium (III) bis-phthalocyaninato complex. J Am Chem Soc 131:4387–4396CrossRef
Zurück zum Zitat Bridgeman AJ, Gerloch M (1993) A cellular ligand-field model for ‘l-l’ spectral intensities. Mol Phys 79:1195–1213CrossRef Bridgeman AJ, Gerloch M (1993) A cellular ligand-field model for ‘l-l’ spectral intensities. Mol Phys 79:1195–1213CrossRef
Zurück zum Zitat Chibotaru LF (2013) Ab initio methodology for pseudospin Hamiltonians of anisotropic magnetic complexes. Adv Chem Phys 153:397–519 Chibotaru LF (2013) Ab initio methodology for pseudospin Hamiltonians of anisotropic magnetic complexes. Adv Chem Phys 153:397–519
Zurück zum Zitat Cimpoesu F, Dahan S, Ladeira S, Ferbinteanu M, Costes JP (2012) Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties. Inorg Chem 51:11279–11293CrossRef Cimpoesu F, Dahan S, Ladeira S, Ferbinteanu M, Costes JP (2012) Chiral crystallization of a heterodinuclear Ni-Ln series: comprehensive analysis of the magnetic properties. Inorg Chem 51:11279–11293CrossRef
Zurück zum Zitat Cimpoesu F, Ferbinteanu M (2014) Magnetic anisotropy in case studies. In: Putz MV (ed) Research horizons of nanosystems structure, properties and interactions. Apple Academics, Ontario, pp 251–292 Cimpoesu F, Ferbinteanu M (2014) Magnetic anisotropy in case studies. In: Putz MV (ed) Research horizons of nanosystems structure, properties and interactions. Apple Academics, Ontario, pp 251–292
Zurück zum Zitat Cimpoesu F, Zaharia A, Stamate D, Panait P, Oprea CI, Gîrtu MA, Ferbinteanu M (2013) New insights in the bonding regime and ligand field in Wernerian complexes: a density functional study. Polyhedron 52:183–195CrossRef Cimpoesu F, Zaharia A, Stamate D, Panait P, Oprea CI, Gîrtu MA, Ferbinteanu M (2013) New insights in the bonding regime and ligand field in Wernerian complexes: a density functional study. Polyhedron 52:183–195CrossRef
Zurück zum Zitat Ciofini I, Adamo C (2001) Intrinsic and environmental effects on the kinetic and thermodynamics of linkage isomerization in nitritopentaamminecobalt(III) complex. J Phys Chem A 105:1086–1092CrossRef Ciofini I, Adamo C (2001) Intrinsic and environmental effects on the kinetic and thermodynamics of linkage isomerization in nitritopentaamminecobalt(III) complex. J Phys Chem A 105:1086–1092CrossRef
Zurück zum Zitat Costes JP, Clemente-Juan JM, Dahan F, Milon J (2004) Unprecedented (Cu2Ln)n complexes (Ln = Gd3+, Tb3+): a new single chain magnet. Inorg Chem 43:8200–8202CrossRef Costes JP, Clemente-Juan JM, Dahan F, Milon J (2004) Unprecedented (Cu2Ln)n complexes (Ln = Gd3+, Tb3+): a new single chain magnet. Inorg Chem 43:8200–8202CrossRef
Zurück zum Zitat Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York
Zurück zum Zitat Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565CrossRef Cundari TR, Stevens WJ (1993) Effective core potential methods for the lanthanides. J Chem Phys 98:5555–5565CrossRef
Zurück zum Zitat Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) An effective method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 105:1968–1986CrossRef Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) An effective method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 105:1968–1986CrossRef
Zurück zum Zitat Deeth RJ, Gerloch M (1986) A cellular ligand-field study of the CuCl4 2− ion in Cs2[CuCl4]. J Chem Soc, Dalton Trans 8:1531–1534CrossRef Deeth RJ, Gerloch M (1986) A cellular ligand-field study of the CuCl4 2− ion in Cs2[CuCl4]. J Chem Soc, Dalton Trans 8:1531–1534CrossRef
Zurück zum Zitat Eslami A (2004) Thermoanalytical study of linkage isomerism in coordination compounds. Part I. Reinvestigation of thermodynamic and thermokinetic of solid state interconversion of nitrito (ONO) and nitro (NO2) isomers of pentaaminecobalt(III) chloride by means of DSC. Thermochim Acta 409:189–193CrossRef Eslami A (2004) Thermoanalytical study of linkage isomerism in coordination compounds. Part I. Reinvestigation of thermodynamic and thermokinetic of solid state interconversion of nitrito (ONO) and nitro (NO2) isomers of pentaaminecobalt(III) chloride by means of DSC. Thermochim Acta 409:189–193CrossRef
Zurück zum Zitat Fedorov DG, Koseki S, Schmidt MW, Gordon MS (2003) Spin-orbit coupling in molecules: chemistry beyond the adiabatic approximation. Int Rev Phys Chem 22:551–592CrossRef Fedorov DG, Koseki S, Schmidt MW, Gordon MS (2003) Spin-orbit coupling in molecules: chemistry beyond the adiabatic approximation. Int Rev Phys Chem 22:551–592CrossRef
Zurück zum Zitat Ferbinteanu M, Cimpoesu F, Tanase S (2015) Metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism. Struct Bond 163:185–229CrossRef Ferbinteanu M, Cimpoesu F, Tanase S (2015) Metal-organic frameworks with d-f cyanide bridges: structural diversity, bonding regime, and magnetism. Struct Bond 163:185–229CrossRef
Zurück zum Zitat Ferbinteanu M, Kajiwara T, Choi KY, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) A binuclear Fe (III) Dy (III) single-molecule-magnet: quantum effects and models. J Am ChemSoc 128:9008–9009CrossRef Ferbinteanu M, Kajiwara T, Choi KY, Nojiri H, Nakamoto A, Kojima N, Cimpoesu F, Fujimura Y, Takaishi S, Yamashita M (2006) A binuclear Fe (III) Dy (III) single-molecule-magnet: quantum effects and models. J Am ChemSoc 128:9008–9009CrossRef
Zurück zum Zitat Ferbinteanu M, Kajiwara T, Cimpoesu F, Katagari K, Yamashita M (2007) The magnetic anisotropy and assembling of the lanthanide coordination units in [Fe(bpca)2][Er(NO3)3(H2O)4]NO3. Polyhedron 26:2069–2073CrossRef Ferbinteanu M, Kajiwara T, Cimpoesu F, Katagari K, Yamashita M (2007) The magnetic anisotropy and assembling of the lanthanide coordination units in [Fe(bpca)2][Er(NO3)3(H2O)4]NO3. Polyhedron 26:2069–2073CrossRef
Zurück zum Zitat Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clérac R (2005) Single-chain magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] made of MnIII-FeIII-MnIII trinuclear single-molecule magnet with an S T = 9/2 spin ground state. J Am Chem Soc 127:3090–3099CrossRef Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clérac R (2005) Single-chain magnet (NEt4)[Mn2(5-MeOsalen)2Fe(CN)6] made of MnIII-FeIII-MnIII trinuclear single-molecule magnet with an S T  = 9/2 spin ground state. J Am Chem Soc 127:3090–3099CrossRef
Zurück zum Zitat Ferguson GL, Zaslow B (1971) Crystal data and structure of [(NH3CH2CH2)2NH2] Cl(CuCl4) at 20 °C and 120 °C. Acta Cryst B27:849–852CrossRef Ferguson GL, Zaslow B (1971) Crystal data and structure of [(NH3CH2CH2)2NH2] Cl(CuCl4) at 20 °C and 120 °C. Acta Cryst B27:849–852CrossRef
Zurück zum Zitat Ferguson J (1964) Electronic absorption spectrum and structure of CuCl4 2−. J Chem Phys 40:3406–3410CrossRef Ferguson J (1964) Electronic absorption spectrum and structure of CuCl4 2−. J Chem Phys 40:3406–3410CrossRef
Zurück zum Zitat Grenthe I, Nordin E (1979a) Nitrito-nitro linkage isomerization in the solid state. 1. X-ray crystallographic studies of trans-bis(ethylenediamine) (isothiocyanato) nitrito- and trans-bis(ethylenediamine)(isothiocyanato)nitrocobalt(III) perchlorate and iodide. Inorg Chem 18:1109–1116CrossRef Grenthe I, Nordin E (1979a) Nitrito-nitro linkage isomerization in the solid state. 1. X-ray crystallographic studies of trans-bis(ethylenediamine) (isothiocyanato) nitrito- and trans-bis(ethylenediamine)(isothiocyanato)nitrocobalt(III) perchlorate and iodide. Inorg Chem 18:1109–1116CrossRef
Zurück zum Zitat Grenthe I, Nordin E (1979b) Nitrito-nitro linkage isomerization in the solid state. 2. A comparative study of the structures of nitrito- and nitropentaaminecobalt(III) dichloride. Inorg Chem 18:1869–1874CrossRef Grenthe I, Nordin E (1979b) Nitrito-nitro linkage isomerization in the solid state. 2. A comparative study of the structures of nitrito- and nitropentaaminecobalt(III) dichloride. Inorg Chem 18:1869–1874CrossRef
Zurück zum Zitat Harlow RL, Wells WJ, Watt GW, Simonsen SH (1974) Crystal structures of the green and yellow thermochromic modifications of bis (N-Methylphenethylammonium) tetrachlorocuprate (II). Discrete square-planar and flattened tetrahedral tetrachlorocuprate(2-)anions. Inorg Chem 13:2106–2111CrossRef Harlow RL, Wells WJ, Watt GW, Simonsen SH (1974) Crystal structures of the green and yellow thermochromic modifications of bis (N-Methylphenethylammonium) tetrachlorocuprate (II). Discrete square-planar and flattened tetrahedral tetrachlorocuprate(2-)anions. Inorg Chem 13:2106–2111CrossRef
Zurück zum Zitat Harlow RL, Wells WJ, Watt GW, Simonsen SH (1975) Crystal and molecular structure of bis[(+)-N, alpha.-dimethylphenethylammonium] tetrachlorocuprate (II). Relation between the electronic spectrum and the distortion of the tetrachlorocuprate chromophore from tetrahedral symmetry. Inorg Chem 14:1768–1772CrossRef Harlow RL, Wells WJ, Watt GW, Simonsen SH (1975) Crystal and molecular structure of bis[(+)-N, alpha.-dimethylphenethylammonium] tetrachlorocuprate (II). Relation between the electronic spectrum and the distortion of the tetrachlorocuprate chromophore from tetrahedral symmetry. Inorg Chem 14:1768–1772CrossRef
Zurück zum Zitat Helmhotz L, Kruh RH (1952) The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion. J Am Chem Soc 74:1176–1181CrossRef Helmhotz L, Kruh RH (1952) The crystal structure of cesium chlorocuprate, Cs2CuCl4, and the spectrum of the chlorocuprate ion. J Am Chem Soc 74:1176–1181CrossRef
Zurück zum Zitat Hill DR, Smith DW (1974) Electronic properties of bis (diethylammonium) tetrachlorocuprate (II). J Inorg Nucl Chem 36:466–467CrossRef Hill DR, Smith DW (1974) Electronic properties of bis (diethylammonium) tetrachlorocuprate (II). J Inorg Nucl Chem 36:466–467CrossRef
Zurück zum Zitat Hitchman MA (1985) Chemical information from the polarized crystal spectra of transition metal complexes. In: Transition Metal Chemistry, Melson GA, Figgis BN (eds.). Marcel Dekker, New York, vol 9, pp 1–223 Hitchman MA (1985) Chemical information from the polarized crystal spectra of transition metal complexes. In: Transition Metal Chemistry, Melson GA, Figgis BN (eds.). Marcel Dekker, New York, vol 9, pp 1–223
Zurück zum Zitat Hitchman MA, James G (1984) The nature of the blue isomer of Ni(1,2-diaminoethane)2(NO2)2. Inorg Chim Acta 88:L19–L21CrossRef Hitchman MA, James G (1984) The nature of the blue isomer of Ni(1,2-diaminoethane)2(NO2)2. Inorg Chim Acta 88:L19–L21CrossRef
Zurück zum Zitat Ishikawa N (2010) Functional phthalocyanine molecular materials. Struct Bond 135:211–228CrossRef Ishikawa N (2010) Functional phthalocyanine molecular materials. Struct Bond 135:211–228CrossRef
Zurück zum Zitat Ishikawa N, Iino T, Kaizu Y (2002) Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic Yttrium(III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A 106:9543–9550CrossRef Ishikawa N, Iino T, Kaizu Y (2002) Determination of ligand-field parameters and f-electronic structures of hetero-dinuclear phthalocyanine complexes with a diamagnetic Yttrium(III) and a paramagnetic trivalent lanthanide ion. J Phys Chem A 106:9543–9550CrossRef
Zurück zum Zitat Ishikawa N, Sugita M, Okubo T, Tanaka N, Iino T, Kaizu Y (2003) Determination of ligand-field parameters and f-electronic structures of double-decker bis (phthalocyaninato) lanthanide complexes. Inorg Chem 42:2440–2446CrossRef Ishikawa N, Sugita M, Okubo T, Tanaka N, Iino T, Kaizu Y (2003) Determination of ligand-field parameters and f-electronic structures of double-decker bis (phthalocyaninato) lanthanide complexes. Inorg Chem 42:2440–2446CrossRef
Zurück zum Zitat Ishikawa N, Sugita M, Wernsdorfer W (2005a) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127:3650–3651CrossRef Ishikawa N, Sugita M, Wernsdorfer W (2005a) Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J Am Chem Soc 127:3650–3651CrossRef
Zurück zum Zitat Ishikawa N, Sugita M, Wernsdorfer W (2005b) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis (phthalocyaninato) terbium and bis (phthalocyaninato) dysprosium anions. Angew Chem Int Ed 44:2931–2935CrossRef Ishikawa N, Sugita M, Wernsdorfer W (2005b) Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis (phthalocyaninato) terbium and bis (phthalocyaninato) dysprosium anions. Angew Chem Int Ed 44:2931–2935CrossRef
Zurück zum Zitat Jensen JH (2001) Intermolecular exchange-induction and charge transfer: derivation of approximate formulas using nonorthogonal localized molecular orbitals. J Chem Phys 114:8775–8783CrossRef Jensen JH (2001) Intermolecular exchange-induction and charge transfer: derivation of approximate formulas using nonorthogonal localized molecular orbitals. J Chem Phys 114:8775–8783CrossRef
Zurück zum Zitat Jørgensen CK, Pappalardo R, Schmidtke HH (1963) Do the “ligand field” parameters in lanthanides represent weak covalent bonding? J Chem Phys 39:1422–1430CrossRef Jørgensen CK, Pappalardo R, Schmidtke HH (1963) Do the “ligand field” parameters in lanthanides represent weak covalent bonding? J Chem Phys 39:1422–1430CrossRef
Zurück zum Zitat Jörgensen SM (1894) Zur Konstitution der Kobalt-, Chrom- und Rhodiumbasen. V. Z Anorg Chem 5:147–196 Jörgensen SM (1894) Zur Konstitution der Kobalt-, Chrom- und Rhodiumbasen. V. Z Anorg Chem 5:147–196
Zurück zum Zitat Kahn O (1993) Molecular magnetism. VCH Publishers, New York Kahn O (1993) Molecular magnetism. VCH Publishers, New York
Zurück zum Zitat Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrády P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mat Sci 28:222–239CrossRef Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrády P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mat Sci 28:222–239CrossRef
Zurück zum Zitat Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove B, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang YF, Komeda T, Yamagishi M, Takeya J (2009) Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc 131:9967–9976CrossRef Katoh K, Yoshida Y, Yamashita M, Miyasaka H, Breedlove B, Kajiwara T, Takaishi S, Ishikawa N, Isshiki H, Zhang YF, Komeda T, Yamagishi M, Takeya J (2009) Direct observation of lanthanide(III)-phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)-phthalocyanine molecules. J Am Chem Soc 131:9967–9976CrossRef
Zurück zum Zitat Khrustalev VN, Kostenko SO, Buzin MI, Korlyukov AA, Zubavichus YV, Kurykin MA, Antipin MY (2012) Highly flexible molecule “chameleon”: reversible thermochromism and phase transitions in solid copper(II) diiminate Cu[CF3–C(NH)–CF=C(NH)–CF3]2. Inorg Chem 51:10590–10602CrossRef Khrustalev VN, Kostenko SO, Buzin MI, Korlyukov AA, Zubavichus YV, Kurykin MA, Antipin MY (2012) Highly flexible molecule “chameleon”: reversible thermochromism and phase transitions in solid copper(II) diiminate Cu[CF3–C(NH)–CF=C(NH)–CF3]2. Inorg Chem 51:10590–10602CrossRef
Zurück zum Zitat Koseki S, Fedorov DG, Schmidt MW, Gordon MS (2001) Spin-orbit splittings in the third-row transition elements: comparison of effective nuclear charge and full Breit-Pauli calculations. J Phys Chem A 105:8262–8268CrossRef Koseki S, Fedorov DG, Schmidt MW, Gordon MS (2001) Spin-orbit splittings in the third-row transition elements: comparison of effective nuclear charge and full Breit-Pauli calculations. J Phys Chem A 105:8262–8268CrossRef
Zurück zum Zitat Landee CP, Roberts SA, Willett RD (1978) Low-temperature magnetic properties of [(C2H5)2NH2]CuCl4, a two-dimensional magnetic system. J Chem Phys 68:4574–4577CrossRef Landee CP, Roberts SA, Willett RD (1978) Low-temperature magnetic properties of [(C2H5)2NH2]CuCl4, a two-dimensional magnetic system. J Chem Phys 68:4574–4577CrossRef
Zurück zum Zitat Lohr LL Jr, Lipscomb WN (1963) An LCAO-MO-study of static distortions of transition metal complexes. Inorg Chem 2:911–917CrossRef Lohr LL Jr, Lipscomb WN (1963) An LCAO-MO-study of static distortions of transition metal complexes. Inorg Chem 2:911–917CrossRef
Zurück zum Zitat Marco de Lucas C, Rodriguez F, Dance JM, Moreno M, Tressaud A (1991) Luminescence of the new elpasolite Rb2KGaF6 doped with Cr3+. J Lumin 48–49:553–557CrossRef Marco de Lucas C, Rodriguez F, Dance JM, Moreno M, Tressaud A (1991) Luminescence of the new elpasolite Rb2KGaF6 doped with Cr3+. J Lumin 48–49:553–557CrossRef
Zurück zum Zitat Marcotrigiano G, Menabue L, Pelacani GC (1976) Tetrahalo- and (mixed-tetrahalo) cuprates of the piperazinium dication: coordination geometry changes in some CuX42—anions. Inorg Chem 15:2333–2336CrossRef Marcotrigiano G, Menabue L, Pelacani GC (1976) Tetrahalo- and (mixed-tetrahalo) cuprates of the piperazinium dication: coordination geometry changes in some CuX42—anions. Inorg Chem 15:2333–2336CrossRef
Zurück zum Zitat McDonald RG, Hichman MA (1986) Electronic “d–d” spectra of the planar tetrachlorocuprate(2−) ions in bis (methadonium) tetrachlorocuprate(II) and bis (creatininium) tetrachlorocuprate (II): analysis of the temperature dependence and vibrational fine structure. Inorg Chem 25:3273–3281CrossRef McDonald RG, Hichman MA (1986) Electronic “d–d” spectra of the planar tetrachlorocuprate(2−) ions in bis (methadonium) tetrachlorocuprate(II) and bis (creatininium) tetrachlorocuprate (II): analysis of the temperature dependence and vibrational fine structure. Inorg Chem 25:3273–3281CrossRef
Zurück zum Zitat McDonald RG, Riley MJ, Hitchman MA (1988) Angular overlap treatment of the variation of the intensities and energies of the d-d transitions of the tetrachlorocuprate (2−) ion on distortion from a planar toward a tetrahedral geometry: interpretation of the electronic spectra of bis (N-benzylpiperazinium) tetrachlorocuprate (II) bis(hydrochloride) and N-(2-ammonioethyl)morpholinium tetrachlorocuprate (II). Inorg Chem 27:894–900CrossRef McDonald RG, Riley MJ, Hitchman MA (1988) Angular overlap treatment of the variation of the intensities and energies of the d-d transitions of the tetrachlorocuprate (2−) ion on distortion from a planar toward a tetrahedral geometry: interpretation of the electronic spectra of bis (N-benzylpiperazinium) tetrachlorocuprate (II) bis(hydrochloride) and N-(2-ammonioethyl)morpholinium tetrachlorocuprate (II). Inorg Chem 27:894–900CrossRef
Zurück zum Zitat McDonald RG, Riley MJ, Hitchman MA (1989) Analysis of the vibrational fine structure in the electronic spectrum of the planar tetrachlorocuprate(II) ion in N-(2-ammonioethyl) morpholinium tetrachlorocuprate (II): evidence for a pseudo tetrahedral distortion in the 2A1g excited electronic state. Inorg Chem 28:752–758CrossRef McDonald RG, Riley MJ, Hitchman MA (1989) Analysis of the vibrational fine structure in the electronic spectrum of the planar tetrachlorocuprate(II) ion in N-(2-ammonioethyl) morpholinium tetrachlorocuprate (II): evidence for a pseudo tetrahedral distortion in the 2A1g excited electronic state. Inorg Chem 28:752–758CrossRef
Zurück zum Zitat Mishra A, Wernsdorfer W, Abboud K, Christou G (2004) Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. J Am Chem Soc 126:15648–15649CrossRef Mishra A, Wernsdorfer W, Abboud K, Christou G (2004) Initial observation of magnetization hysteresis and quantum tunneling in mixed manganese-lanthanide single-molecule magnets. J Am Chem Soc 126:15648–15649CrossRef
Zurück zum Zitat Moffitt W, Ballhausen CJ (1956) Quantum theory. Ann Rev Phys Chem 7:107–136CrossRef Moffitt W, Ballhausen CJ (1956) Quantum theory. Ann Rev Phys Chem 7:107–136CrossRef
Zurück zum Zitat Nakano H (1993) Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J Chem Phys 99:7983–7992CrossRef Nakano H (1993) Quasidegenerate perturbation theory with multiconfigurational self-consistent-field reference functions. J Chem Phys 99:7983–7992CrossRef
Zurück zum Zitat Nakano H, Nakayama K, Hirao K, Dupuis M (1997) Transition state barrier height for the reaction H2CO-H2 + CO studied by multireference Moller-Plesset perturbation theory. J Chem Phys 106:4912–4917CrossRef Nakano H, Nakayama K, Hirao K, Dupuis M (1997) Transition state barrier height for the reaction H2CO-H2 + CO studied by multireference Moller-Plesset perturbation theory. J Chem Phys 106:4912–4917CrossRef
Zurück zum Zitat Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRef Neese F (2012) The ORCA program system. Wiley Interdiscip Rev Comput Mol Sci 2:73–78CrossRef
Zurück zum Zitat Newman DJ, Ng BKC (2000) Crystal field handbook. Cambridge University Press, CambridgeCrossRef Newman DJ, Ng BKC (2000) Crystal field handbook. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K (2004) Mechanism of ferromagnetic coupling in copper(II)-gadolinium(III) complexes. J Am Chem Soc 126:3321–3331CrossRef Paulovic J, Cimpoesu F, Ferbinteanu M, Hirao K (2004) Mechanism of ferromagnetic coupling in copper(II)-gadolinium(III) complexes. J Am Chem Soc 126:3321–3331CrossRef
Zurück zum Zitat Pierloot K (2001) Nondynamic correlation effects in transition metal coordination compounds. In: Cundari T (ed) Computational organometallic chemistry. Marcel Dekker, New York, pp 123–158 Pierloot K (2001) Nondynamic correlation effects in transition metal coordination compounds. In: Cundari T (ed) Computational organometallic chemistry. Marcel Dekker, New York, pp 123–158
Zurück zum Zitat Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2014) The angular overlap model extended for two-open-shell f and d electrons. Phys Chem Chem Phys 16:12282–12290CrossRef Ramanantoanina H, Urland W, Cimpoesu F, Daul C (2014) The angular overlap model extended for two-open-shell f and d electrons. Phys Chem Chem Phys 16:12282–12290CrossRef
Zurück zum Zitat Reber C, Gudel HU, Meyer G, Schleid T, Daul CA (1989) Optical spectroscopic and structural properties of vanadium(3+) doped fluoride, chloride, and bromide elpasolite lattices. Inorg Chem 28:3249–3258CrossRef Reber C, Gudel HU, Meyer G, Schleid T, Daul CA (1989) Optical spectroscopic and structural properties of vanadium(3+) doped fluoride, chloride, and bromide elpasolite lattices. Inorg Chem 28:3249–3258CrossRef
Zurück zum Zitat Reinen D (2014) A new approach to treating vibronic coupling under stress: the strain-induced enhancement or suppression of Jahn-Teller distortions in tetrahedral CuIICl4-complexes, and the transition to octahedral structures. Coord Chem Rev 272:30–47CrossRef Reinen D (2014) A new approach to treating vibronic coupling under stress: the strain-induced enhancement or suppression of Jahn-Teller distortions in tetrahedral CuIICl4-complexes, and the transition to octahedral structures. Coord Chem Rev 272:30–47CrossRef
Zurück zum Zitat Riley MJ, Hitchman MA (1987) Temperature dependence of the electronic spectrum of the planar tetrachlorocuprate(2−) ion: role of the ground- and excited-state potential surfaces. Inorg Chem 26:3205–3215CrossRef Riley MJ, Hitchman MA (1987) Temperature dependence of the electronic spectrum of the planar tetrachlorocuprate(2−) ion: role of the ground- and excited-state potential surfaces. Inorg Chem 26:3205–3215CrossRef
Zurück zum Zitat Riley MJ, Neill D, Bernhardt PV, Byriel KA, Kennard CHL (1998) Thermochromism and structure of piperazinium tetrachlorocuprate(II) complexes. Inorg Chem 37:3635–3639CrossRef Riley MJ, Neill D, Bernhardt PV, Byriel KA, Kennard CHL (1998) Thermochromism and structure of piperazinium tetrachlorocuprate(II) complexes. Inorg Chem 37:3635–3639CrossRef
Zurück zum Zitat Roos BO, Andersson K, Fulscher MK, Malmqvist PA, Serrano-Andres L, Pierloot K, Merchan M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys 93:219–331 Roos BO, Andersson K, Fulscher MK, Malmqvist PA, Serrano-Andres L, Pierloot K, Merchan M (1996) Multiconfigurational perturbation theory: applications in electronic spectroscopy. Adv Chem Phys 93:219–331
Zurück zum Zitat Schäffer CE (1967) The Angular Overlap Model Applied to Chiral Chromophores and the Parentage Interrelation of Absolute Configurations. Proc Roy Soc A 297:96–133 Schäffer CE (1967) The Angular Overlap Model Applied to Chiral Chromophores and the Parentage Interrelation of Absolute Configurations. Proc Roy Soc A 297:96–133
Zurück zum Zitat Schäffer CE (1973) Two symmetry parametrizations of the angular overlap model of the ligand field: relation to the crystal field model. Struct Bond 14:69–110CrossRef Schäffer CE (1973) Two symmetry parametrizations of the angular overlap model of the ligand field: relation to the crystal field model. Struct Bond 14:69–110CrossRef
Zurück zum Zitat Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure. J Comput Chem 14:1347–1363CrossRef Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure. J Comput Chem 14:1347–1363CrossRef
Zurück zum Zitat Schönherr T, Atanasov M, Adamsky H (2003) Angular overlap model. In: Lever ABP, McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II. Elsevier, Oxford, vol 2, pp 443–455 Schönherr T, Atanasov M, Adamsky H (2003) Angular overlap model. In: Lever ABP, McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II. Elsevier, Oxford, vol 2, pp 443–455
Zurück zum Zitat Sessoli R, Powell A (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341CrossRef Sessoli R, Powell A (2009) Strategies towards single molecule magnets based on lanthanide ions. Coord Chem Rev 253:2328–2341CrossRef
Zurück zum Zitat Skelton JM, Crespo-Otero R, Hatcher LE, Parker SC, Raithby PR, Walsh A (2015) Energetics, thermal isomerisation and photochemistry of the linkage-isomer system [Ni(Et4dien)(2-O, ON)(1-NO2)]. Cryst Eng Comm 17:383–394CrossRef Skelton JM, Crespo-Otero R, Hatcher LE, Parker SC, Raithby PR, Walsh A (2015) Energetics, thermal isomerisation and photochemistry of the linkage-isomer system [Ni(Et4dien)(2-O, ON)(1-NO2)]. Cryst Eng Comm 17:383–394CrossRef
Zurück zum Zitat Smith DW (1977) Angular overlap treatment of d-s and d-p mixing in chlorocuprates(II). Inorg Chim Acta 22:107–110CrossRef Smith DW (1977) Angular overlap treatment of d-s and d-p mixing in chlorocuprates(II). Inorg Chim Acta 22:107–110CrossRef
Zurück zum Zitat Stepanow S, Honolka J, Gambardella P, Vitali L, Abdurakhmanova N, Tseng TC, St Rauschenbach, St Tait, Sessi V, Klyatskaya S, Ruben M, Kern K (2010) Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. J Am Chem Soc 132:11900–11901CrossRef Stepanow S, Honolka J, Gambardella P, Vitali L, Abdurakhmanova N, Tseng TC, St Rauschenbach, St Tait, Sessi V, Klyatskaya S, Ruben M, Kern K (2010) Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. J Am Chem Soc 132:11900–11901CrossRef
Zurück zum Zitat Stevens KWH (1952) Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc Phys Soc A 65:209–215CrossRef Stevens KWH (1952) Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc Phys Soc A 65:209–215CrossRef
Zurück zum Zitat Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared exponent basis sets for the first and second row atoms. J Chem Phys 81:6026–6033CrossRef Stevens WJ, Basch H, Krauss M (1984) Compact effective potentials and efficient shared exponent basis sets for the first and second row atoms. J Chem Phys 81:6026–6033CrossRef
Zurück zum Zitat Tanase S, Reedijk J (2006) Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev 250:2501–2510CrossRef Tanase S, Reedijk J (2006) Chemistry and magnetism of cyanido-bridged d-f assemblies. Coord Chem Rev 250:2501–2510CrossRef
Zurück zum Zitat te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Chemistry with ADF. Comput Chem 22:931–967CrossRef te Velde G, Bickelhaupt FM, van Gisbergen SJA, Fonseca Guerra C, Baerends EJ, Snijders JG, Ziegler TJ (2001) Chemistry with ADF. Comput Chem 22:931–967CrossRef
Zurück zum Zitat Trueba A, Garcia-Fernandez P, García-Lastra JM, Aramburu JA, Barriuso MT, Moreno M (2011) Spectrochemical series and the dependence of Racah and 10dq parameters on the metal-ligand distance: microscopic origin. J Phys Chem A 115:1423–1432CrossRef Trueba A, Garcia-Fernandez P, García-Lastra JM, Aramburu JA, Barriuso MT, Moreno M (2011) Spectrochemical series and the dependence of Racah and 10dq parameters on the metal-ligand distance: microscopic origin. J Phys Chem A 115:1423–1432CrossRef
Zurück zum Zitat Urland W (1976) On the ligand-field potential for f electrons in the angular overlap model. Chem Phys 14:393–401CrossRef Urland W (1976) On the ligand-field potential for f electrons in the angular overlap model. Chem Phys 14:393–401CrossRef
Zurück zum Zitat Urland W (1981) The assessment of the crystal-field parameters for f”-electron systems by the angular overlap model: rare-earth ions in LiMF4. Chem Phys Lett 77:58–62CrossRef Urland W (1981) The assessment of the crystal-field parameters for f”-electron systems by the angular overlap model: rare-earth ions in LiMF4. Chem Phys Lett 77:58–62CrossRef
Zurück zum Zitat Van Oort MJM, Neshvad G, White MA (1987) An investigation of factors governing conformational disorder of hydrocarbon chains in the solid state. J Solid State Chem 69:145–152CrossRef Van Oort MJM, Neshvad G, White MA (1987) An investigation of factors governing conformational disorder of hydrocarbon chains in the solid state. J Solid State Chem 69:145–152CrossRef
Zurück zum Zitat Van Vleck JH (1932) Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys Rev 41:208–215CrossRef Van Vleck JH (1932) Theory of the variations in paramagnetic anisotropy among different salts of the iron group. Phys Rev 41:208–215CrossRef
Zurück zum Zitat Vanquickenborne LG, Ceulemans A (1981) Ligand field spectra of square-planar platinum(II) and palladium(II) complexes. Inorg Chem 20:796–800CrossRef Vanquickenborne LG, Ceulemans A (1981) Ligand field spectra of square-planar platinum(II) and palladium(II) complexes. Inorg Chem 20:796–800CrossRef
Zurück zum Zitat von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2:43–62CrossRef von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2:43–62CrossRef
Zurück zum Zitat Werner A (1904) Lehrbuch der Stereochemie. Gustav Fischer, Jena Werner A (1904) Lehrbuch der Stereochemie. Gustav Fischer, Jena
Zurück zum Zitat Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab-initio calculations of solvated molecules. J Phys Chem 97:8050–8053CrossRef Wesolowski TA, Warshel A (1993) Frozen density functional approach for ab-initio calculations of solvated molecules. J Phys Chem 97:8050–8053CrossRef
Zurück zum Zitat Willett RD, Haugen JA, Lebsack J, Morrey J (1974) Thermochromism in copper(II) chlorides: coordination geometry changes in tetrachlorocuprate(2-) anions. Inorg Chem 13:2510–2513CrossRef Willett RD, Haugen JA, Lebsack J, Morrey J (1974) Thermochromism in copper(II) chlorides: coordination geometry changes in tetrachlorocuprate(2-) anions. Inorg Chem 13:2510–2513CrossRef
Zurück zum Zitat Wolfram Research (2014) Inc. Mathematica. Champaign, Illinois Wolfram Research (2014) Inc. Mathematica. Champaign, Illinois
Zurück zum Zitat Wolfram S (2003) The mathematica book, 5th edn. Wolfram-Media, Champaign, Illinois Wolfram S (2003) The mathematica book, 5th edn. Wolfram-Media, Champaign, Illinois
Zurück zum Zitat Wybourne BG (1965) Spectroscopic properties of rare earths. Wiley Interscience, New York Wybourne BG (1965) Spectroscopic properties of rare earths. Wiley Interscience, New York
Zurück zum Zitat Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. I. The transition state method. Theor Chim Acta 46:1–10CrossRef Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method. I. The transition state method. Theor Chim Acta 46:1–10CrossRef
Metadaten
Titel
Coordination Bonding: Electronic Structure and Properties
verfasst von
Fanica Cimpoesu
Marilena Ferbinteanu
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-55875-2_6