This chapter offers a basic introduction to copulas and presents their main properties along with the most important theoretical results such as the Fréchet-Hoeffding bounds, Sklar’s Theorem, and the invariance principle.
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
Cambou, M., Hofert, M., & Lemieux, C. (2016). Quasi-random numbers for copula models.
Statistics and Computing, 27(5), 1307–1329.
MathSciNetMATHCrossRef
Durrett, R. (2010).
Probability: Theory and Examples (4th ed.). London: Cambridge University Press.
MATHCrossRef
Embrechts, P., Lindskog, F., & McNeil, A. J. (2003). Modelling dependence with copulas and applications to risk management. In S. Rachev (Ed.),
Handbook of heavy tailed distributions in finance (pp. 329–384). Amsterdam: Elsevier.
CrossRef
Embrechts, P., McNeil, A. J., & Straumann, D. (2002). Correlation and dependency in risk management: Properties and pitfalls. In M. Dempster (Ed.),
Risk management: Value at risk and beyond (pp. 176–223). London: Cambridge University Press.
CrossRef
Embrechts, P., Puccetti, G., & Rüschendorf, L. (2013). Model uncertainty and VaR aggregation.
Journal of Banking and Finance, 37(8), 2750–2764.
CrossRef
Fréchet, M. (1935). Généralisations du théorème des probabilités totales.
Fundamenta Mathematica, 25, 379–387.
MATHCrossRef
Fréchet, M. (1951). Sur les tableaux de corrélations dont les marges sont données.
Annales de l’Université de Lyon, 9, 53–77.
MATH
Genest, C. (1987). Frank’s family of bivariate distributions.
Biometrika, 74(3), 549–555.
MathSciNetMATHCrossRef
Genest, C., & Nešlehová, J. (2007). A primer on copulas for count data.
The ASTIN Bulletin, 37, 475–515.
MathSciNetMATHCrossRef
Genest, C., Nešlehová, J. G., & Rémillard, B. (2013). On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data.
Journal of Multivariate Analysis, 117, 214–228.
MathSciNetMATHCrossRef
Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., et al. (2017). mvtnorm: Multivariate normal and
t distribution, R package version 1.0-6.
https://CRAN.R-project.org/package=mvtnorm
Hofert, M. (2010).
Sampling nested Archimedean copulas with applications to CDO pricing. PhD thesis, Südwestdeutscher Verlag für Hochschulschriften AG & Co. KG, ISBN 978-3-8381-1656-3.
Hofert, M. (2013). On sampling from the multivariate
t distribution.
TheRJournal, 5(2), 129–136.
MathSciNet
Hofert, M., & Mächler, M. (2014). A graphical goodness-of-fit test for dependence models in higher dimensions.
Journal of Computational and Graphical Statistics, 23(3), 700–716.
MathSciNetCrossRef
Hofert, M., Memartoluie, A., Saunders, D., & Wirjanto, T. (2017). Improved algorithms for computing worst value-at-risk.
Statistics & Risk Modeling, 34(1–2), 13–31.
MathSciNetMATH
Hoeffding, W. (1940). Massstabinvariante Korrelationstheorie.
Schriften des mathematischen Seminars und des Instituts für Angewandte Mathematik der Universität Berlin 5, 181–233.
Iman, R. L., & Conover, W. J. (1982). A distribution-free approach to inducing rank correlation among input variables.
Communications in Statistics – Simulation and Computation, 11(3), 311–334.
MATHCrossRef
Jaworski, P., Durante, F., Härdle, W. K., & Rychlik, T. (Eds.) (2010).
Copula theory and its applications.
Lecture notes in statistics (Vol. 198). Berlin: Springer.
Kojadinovic, I., & Yan, J. (2010). Comparison of three semiparametric methods for estimating dependence parameters in copula models.
Insurance: Mathematics and Economics, 47, 52–63.
MathSciNetMATH
Lemieux, C. (2009).
Monte Carlo and quasi-Monte Carlo sampling.
Springer series in statistics. New York: Springer.
MATH
Marshall, A. W., & Olkin, I. (1967). A multivariate exponential distribution.
Journal of the American Statistical Association, 62, 30–44.
MathSciNetMATHCrossRef
McNeil, A. J., Frey, R., & Embrechts, P. (2015).
Quantitative risk management: Concepts, techniques and tools (2nd ed.). Princeton, NJ: Princeton University Press.
MATH
Nelsen, R. B. (2006).
An introduction to copulas. New York: Springer.
MATH
Packham, N., & Schmidt, W. M. (2010). Latin hypercube sampling with dependence and applications in finance.
Journal of Computational Finance, 13(3), 81–111.
MathSciNetMATHCrossRef
Puccetti, G., & Rüschendorf, L. (2013). Sharp bounds for sums of dependent risks.
Journal of Applied Probability, 50(1), 42–53.
MathSciNetMATHCrossRef
Rosenblatt, M. (1952). Remarks on a multivariate transformation.
The Annals of Mathematical Statistics, 23(3), 470–472.
MathSciNetMATHCrossRef
Rüschendorf, L. (2009). On the distributional transform, Sklar’s Theorem, and the empirical copula process.
Journal of Statistical Planning and Inference, 139(11), 3921–3927.
MathSciNetMATHCrossRef
Sarkar, D. (2008),
Lattice: Multivariate data visualization with R. New York: Springer.
MATHCrossRef
Scarsini, M. (1984). On measures of concordance.
Stochastica, 8(3), 201–218.
MathSciNetMATH
Schmitz, V. (2003).
Copulas and stochastic processes. PhD thesis, Rheinisch-Westfälische Technische Hochschule Aachen.
Schweizer, B., & Wolff, E. F. (1981). On nonparametric measures of dependence for random variables.
The Annals of Statistics, 9, 879–885.
MathSciNetMATHCrossRef
Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges.
Publications de l’Institut de Statistique de l’Université de Paris, 8, 229–231.
MATH
Sklar, A. (1996). Random variables, distribution functions, and copulas – A personal look backward and forward.
Distributions with Fixed Marginals and Related Topics, 28, 1–14.
MathSciNet
Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.
Unternehmen haben das Innovationspotenzial der eigenen Mitarbeiter auch außerhalb der F&E-Abteilung erkannt. Viele Initiativen zur Partizipation scheitern in der Praxis jedoch häufig. Lesen Sie hier - basierend auf einer qualitativ-explorativen Expertenstudie - mehr über die wesentlichen Problemfelder der mitarbeiterzentrierten Produktentwicklung und profitieren Sie von konkreten Handlungsempfehlungen aus der Praxis. Jetzt gratis downloaden!