Zum Inhalt

Correction: The classifications of o-monomials and of 2-to-1 binomials are equivalent

  • Open Access
  • 15.05.2025
  • Correction
Erschienen in:

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
The original article can be found online at https://​doi.​org/​10.​1007/​s10623-024-01463-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Correction to: Designs, Codes and Cryptography (2025) 93:961–970 https://doi.org/10.1007/s10623-024-01463-1
In the original publication of the article [1], there were misprints in the statement of \(F_7(x)\) in the Theorem 4.1. The proof given in [1] is true and yields the polynomial \(F_7(x)\). The corrected Theorem 4.1 is given below.
Theorem 1.1
(Theorem 4.1. of [1]) The following polynomials define 2-to-1 maps on \(\mathbb F_{2^{2m+1}}\) for any \(a \in \mathbb F_{2^{2m+1}}^*\):
  • \(F_1(x)=x^{2^{m+1}+2}+x^{2^{m+1}}+x^2+ax\),
  • \(F_2(x)=x^{2^{m+1}+2}+ax^{2^{m+1}+1}+(a+1)x^{2^{m+1}}+x^2+ax\),
  • \(F_3(x)=x^{2^{n}-2}+x^{2^n-2^{m+1}}+x^{2^n-2^{m+1}-2}+ax\),
  • \(F_4(x)=x^6+x^4+ax^3+(a+1)x^2+ax\),
  • \(F_5(x)=ax^6+x^5+x^3+x\),
  • \(F_6(x)=x^{2^{m+1}+2^m}+x^{2^{m+1}}+x^{2^m}+ax^3+ax^2+ax\),
  • \(F_7(x)=x^{16}+a^4x^{12}+x^8+a^2x^6+x^4+ax^3\) if \(m \not \equiv 1 \pmod 3\).

Acknowledgements

We thank Mike Zieve for pointing out the misprint.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
download
DOWNLOAD
print
DRUCKEN
Titel
Correction: The classifications of o-monomials and of 2-to-1 binomials are equivalent
Verfasst von
Lukas Kölsch
Gohar Kyureghyan
Publikationsdatum
15.05.2025
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 7/2025
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-025-01645-5
1.
Zurück zum Zitat Kölsch L., Kyureghyan G.: The classifications of o-monomials and of 2-to-1 binomials are equivalent. Des. Codes Cryptogr. 93, 961–970 (2024). https://​doi.​org/​10.​1007/​s10623-024-01463-1.MathSciNetCrossRef
Bildnachweise
AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, NTT Data/© NTT Data, Wildix/© Wildix, arvato Systems GmbH/© arvato Systems GmbH, Ninox Software GmbH/© Ninox Software GmbH, Nagarro GmbH/© Nagarro GmbH, GWS mbH/© GWS mbH, CELONIS Labs GmbH, USU GmbH/© USU GmbH, G Data CyberDefense/© G Data CyberDefense, FAST LTA/© FAST LTA, Vendosoft/© Vendosoft, Kumavision/© Kumavision, Noriis Network AG/© Noriis Network AG, WSW Software GmbH/© WSW Software GmbH, tts GmbH/© tts GmbH, Asseco Solutions AG/© Asseco Solutions AG, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH