Skip to main content

2019 | OriginalPaper | Buchkapitel

Correlate Influential News Article Events to Stock Quote Movement

verfasst von : Arun Chaitanya Mandalapu, Saranya Gunabalan, Avinash Sadineni, Taotao Cai, Nur Al Hasan Haldar, Jianxin Li

Erschienen in: Advanced Data Mining and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study is to investigate the digital media influence on financial equity stocks. For investment plans, knowledge-based decision support system is an important criterion. The stock exchange is becoming one of the major areas of investments. Various factors affect the stock exchange in which social media and digital news articles are found to be the major factors. As the world is more connected now than a decade ago, social media does play a main role in making decisions and change the perception of looking at things. Therefore a robust model is an important need for forecasting the stock prices movement using social media news or articles. From this line of research, we assess the performance of correlation-based models to check the rigorousness over the large data sets of stocks and the news articles. We evaluate the various stock quotes of entities across the world on the day news article is published. Conventional sentiment analysis is applied to the news article events to extract the polarity by categorizing the positive and negative statements to study their influence on the stocks based on correlation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Goyal, A., Gupta, V., Kumar, M.: Recent named entity recognition and classification techniques: a systematic review. Comput. Sci. Rev. 29, 21–43 (2018)CrossRef Goyal, A., Gupta, V., Kumar, M.: Recent named entity recognition and classification techniques: a systematic review. Comput. Sci. Rev. 29, 21–43 (2018)CrossRef
2.
Zurück zum Zitat He, W., Guo, L., Shen, J., Akula, V.: Social media-based forecasting: a case study of tweets and stock prices in the financial services industry. J. Organ. End User Comput. 28, 10 (2016)CrossRef He, W., Guo, L., Shen, J., Akula, V.: Social media-based forecasting: a case study of tweets and stock prices in the financial services industry. J. Organ. End User Comput. 28, 10 (2016)CrossRef
3.
Zurück zum Zitat Lee, T.K., Cho, J.H., Kwon, D.S., Sohn, S.Y.: Global stock market investment strategies based on financial network indicators using machine learning techniques. Expert Syst. Appl. 117, 228–242 (2019)CrossRef Lee, T.K., Cho, J.H., Kwon, D.S., Sohn, S.Y.: Global stock market investment strategies based on financial network indicators using machine learning techniques. Expert Syst. Appl. 117, 228–242 (2019)CrossRef
4.
Zurück zum Zitat Nguyen, T.H., Shirai, K., Velcin, J.: Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 42(24), 9603–9611 (2015)CrossRef Nguyen, T.H., Shirai, K., Velcin, J.: Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 42(24), 9603–9611 (2015)CrossRef
5.
Zurück zum Zitat Zhang, X., Zhang, Y., Wang, S., Yao, Y., Fang, B., Philip, S.Y.: Improving stock market prediction via heterogeneous information fusion. Knowl.-Based Syst. 143, 236–247 (2018)CrossRef Zhang, X., Zhang, Y., Wang, S., Yao, Y., Fang, B., Philip, S.Y.: Improving stock market prediction via heterogeneous information fusion. Knowl.-Based Syst. 143, 236–247 (2018)CrossRef
Metadaten
Titel
Correlate Influential News Article Events to Stock Quote Movement
verfasst von
Arun Chaitanya Mandalapu
Saranya Gunabalan
Avinash Sadineni
Taotao Cai
Nur Al Hasan Haldar
Jianxin Li
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-35231-8_24