Skip to main content
Erschienen in: Polymer Bulletin 10/2018

16.01.2018 | Original Paper

Correlating annealing temperature of ZnO nanoparticle electron transport layer with performance of inverted polymer solar cells

verfasst von: Rui Xu, Xiaoxiang Sun, Chang Li, Like Huang, Zhenglong Li, Hongkun Cai, Juan Li, Yaofang Zhang, Jian Ni, Jianjun Zhang

Erschienen in: Polymer Bulletin | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We fabricated inverted polymer solar cells (PSCs) with the structure of ITO/ZnO NPs/Active layer/MoO3/Ag, in which ZnO NPs act as electron transport layer (ETL), poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b0]-dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diy (PTB7) as donor and [6,6]-phenyl-C71-butyric-acidmethyl-ester (PC71BM) as accepter. It is found that the temperature employed during the annealing process of ZnO NPs has significant impact on the efficiency of the resulted PSCs. The optimized PSC with ZnO NPs annealed at 150 °C based on PTB7:PC71BM (1:1.5 w/w) exhibited a power-conversion efficiency of 7.37% with open-circuit voltage (Voc) of 0.722 V, short-circuit current density (Jsc) of 15.38 mA cm−2, and fill factor (FF) of 66.4%. The effects of the annealing temperature on photovoltaic performances were further illustrated with transmission spectrum, atomic force microscopy, X-ray diffraction and PL spectra, meanwhile electrical performance were illustrated with conductivity. Our result indicated that the improved efficiency is due to the optimized ETL/active layer interface, the enhanced transparency and electron transport of the ETLs. As its facile preparation process, this kind of ETL is compatible with roll-to-roll manufacturing of larger area flexible PSCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Small CE, Chen S, Subbiah J, Amb CM, Tsang S-W, Lai T-H, Reynolds JR, So F (2012) High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat Photonics 6:115CrossRef Small CE, Chen S, Subbiah J, Amb CM, Tsang S-W, Lai T-H, Reynolds JR, So F (2012) High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat Photonics 6:115CrossRef
2.
Zurück zum Zitat Li G, Chu C-W, Shrotriya V, Huang J, Yang Y (2006) Efficient inverted polymer solar cells. Appl Phys Lett 88:253503CrossRef Li G, Chu C-W, Shrotriya V, Huang J, Yang Y (2006) Efficient inverted polymer solar cells. Appl Phys Lett 88:253503CrossRef
3.
Zurück zum Zitat Chen LM, Hong Z, Li G, Yang Y (2009) Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater 21:1434CrossRef Chen LM, Hong Z, Li G, Yang Y (2009) Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Adv Mater 21:1434CrossRef
4.
Zurück zum Zitat Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv Mater 23:1679CrossRefPubMed Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv Mater 23:1679CrossRefPubMed
5.
Zurück zum Zitat Liang Y, Yu L (2010) A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res 43:1227CrossRefPubMed Liang Y, Yu L (2010) A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res 43:1227CrossRefPubMed
6.
Zurück zum Zitat Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297CrossRef Park SH, Roy A, Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297CrossRef
7.
Zurück zum Zitat Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M (2008) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732CrossRefPubMed Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletete M, Durocher G, Tao Y, Leclerc M (2008) Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732CrossRefPubMed
8.
Zurück zum Zitat Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617CrossRef Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617CrossRef
9.
Zurück zum Zitat Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864CrossRef Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864CrossRef
10.
Zurück zum Zitat Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497CrossRefPubMed Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497CrossRefPubMed
11.
Zurück zum Zitat Hauch JA, Schilinsky P, Choulis SA, Childers R, Biele M, Brabec CJ (2008) Flexible organic P3HT: PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime. Sol Energy Mater Sol Cells 92:727CrossRef Hauch JA, Schilinsky P, Choulis SA, Childers R, Biele M, Brabec CJ (2008) Flexible organic P3HT: PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime. Sol Energy Mater Sol Cells 92:727CrossRef
12.
Zurück zum Zitat Lungenschmied C, Dennler G, Neugebauer H, Sariciftci SN, Glatthaar M, Meyer T, Meyer A (2007) Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells 91:379CrossRef Lungenschmied C, Dennler G, Neugebauer H, Sariciftci SN, Glatthaar M, Meyer T, Meyer A (2007) Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells 91:379CrossRef
13.
Zurück zum Zitat Brabec CJ, Gowrisanker S, Halls JJ, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22:3839CrossRefPubMed Brabec CJ, Gowrisanker S, Halls JJ, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22:3839CrossRefPubMed
14.
Zurück zum Zitat Hung L, Tang CW, Mason MG (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett 70:152CrossRef Hung L, Tang CW, Mason MG (1997) Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Appl Phys Lett 70:152CrossRef
15.
Zurück zum Zitat Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley DD, Durrant JR (2006) Degradation of organic solar cells due to air exposure. Sol Energy Mater Sol Cells 90:3520CrossRef Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley DD, Durrant JR (2006) Degradation of organic solar cells due to air exposure. Sol Energy Mater Sol Cells 90:3520CrossRef
16.
Zurück zum Zitat De Jong M, Van Ijzendoorn L, De Voigt M (2000) Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77:2255CrossRef De Jong M, Van Ijzendoorn L, De Voigt M (2000) Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes. Appl Phys Lett 77:2255CrossRef
17.
Zurück zum Zitat Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686CrossRef Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Sol Energy Mater Sol Cells 92:686CrossRef
18.
Zurück zum Zitat Yan H, Lee P, Armstrong NR, Graham A, Evmenenko GA, Dutta P, Marks TJ (2005) High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J Am Chem Soc 127:3172CrossRefPubMed Yan H, Lee P, Armstrong NR, Graham A, Evmenenko GA, Dutta P, Marks TJ (2005) High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. J Am Chem Soc 127:3172CrossRefPubMed
19.
Zurück zum Zitat Norrman K, Gevorgyan SA, Krebs FC (2008) Water-induced degradation of polymer solar cells studied by H 2 18 O labeling. ACS Appl Mater Interfaces 1:102CrossRef Norrman K, Gevorgyan SA, Krebs FC (2008) Water-induced degradation of polymer solar cells studied by H 2 18 O labeling. ACS Appl Mater Interfaces 1:102CrossRef
20.
Zurück zum Zitat Krebs FC (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron 10:761CrossRef Krebs FC (2009) All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron 10:761CrossRef
21.
Zurück zum Zitat Desai A, Haque M (2007) Mechanical properties of ZnO nanowires. Sens Actuators A 134:169CrossRef Desai A, Haque M (2007) Mechanical properties of ZnO nanowires. Sens Actuators A 134:169CrossRef
22.
Zurück zum Zitat Yang T, Cai W, Qin D, Wang E, Lan L, Gong X, Peng J, Cao Y (2010) Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J Phys Chem C 114:6849CrossRef Yang T, Cai W, Qin D, Wang E, Lan L, Gong X, Peng J, Cao Y (2010) Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J Phys Chem C 114:6849CrossRef
23.
Zurück zum Zitat Chen S, Small CE, Amb CM, Subbiah J, Lai Th, Tsang SW, Manders JR, Reynolds JR, So F (2012) Inverted polymer solar cells with reduced interface recombination. Adv Energy Mater 2:1333CrossRef Chen S, Small CE, Amb CM, Subbiah J, Lai Th, Tsang SW, Manders JR, Reynolds JR, So F (2012) Inverted polymer solar cells with reduced interface recombination. Adv Energy Mater 2:1333CrossRef
24.
Zurück zum Zitat Fonoberov VA, Alim KA, Balandin AA, Xiu F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B 73:165317CrossRef Fonoberov VA, Alim KA, Balandin AA, Xiu F, Liu J (2006) Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals. Phys Rev B 73:165317CrossRef
25.
Zurück zum Zitat Klenk R (2001) Characterisation and modelling of chalcopyrite solar cells. Thin Solid Films 387:135CrossRef Klenk R (2001) Characterisation and modelling of chalcopyrite solar cells. Thin Solid Films 387:135CrossRef
26.
Zurück zum Zitat Sun X, Li C, Huang L, Xu R, Ni J, Cai H, Li J, Zhang J (2017) Effects of high-boiling-point additive 2-bromonaphthalene on polymer solar cells fabricated in ambient air. Polym Bull 74(11):4515–4524CrossRef Sun X, Li C, Huang L, Xu R, Ni J, Cai H, Li J, Zhang J (2017) Effects of high-boiling-point additive 2-bromonaphthalene on polymer solar cells fabricated in ambient air. Polym Bull 74(11):4515–4524CrossRef
27.
Zurück zum Zitat Sun X, Ni J, Li C, Huang L, Xu R, Li Z, Cai H, Li J, Zhang J (2016) Air-processed high performance ternary blend solar cell based on PTB7-Th:PCDTBT:PC 70 BM. Org Electron 37:222CrossRef Sun X, Ni J, Li C, Huang L, Xu R, Li Z, Cai H, Li J, Zhang J (2016) Air-processed high performance ternary blend solar cell based on PTB7-Th:PCDTBT:PC 70 BM. Org Electron 37:222CrossRef
28.
Zurück zum Zitat Sun B, Sirringhaus H (2005) Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408CrossRefPubMed Sun B, Sirringhaus H (2005) Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5:2408CrossRefPubMed
29.
Zurück zum Zitat Zak AK, Abrishami ME, Majid WA, Yousefi R, Hosseini S (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37:393CrossRef Zak AK, Abrishami ME, Majid WA, Yousefi R, Hosseini S (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram Int 37:393CrossRef
30.
Zurück zum Zitat Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13:251CrossRef Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci 13:251CrossRef
31.
Zurück zum Zitat Morvillo P, Diana R, Ricciardi R, Bobeico E, Minarini C (2015) High efficiency inverted polymer solar cells with solution-processed ZnO buffer layer. J Sol Gel Sci Technol 73:550CrossRef Morvillo P, Diana R, Ricciardi R, Bobeico E, Minarini C (2015) High efficiency inverted polymer solar cells with solution-processed ZnO buffer layer. J Sol Gel Sci Technol 73:550CrossRef
32.
Zurück zum Zitat Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649CrossRef Chen H-Y, Hou J, Zhang S, Liang Y, Yang G, Yang Y, Yu L, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649CrossRef
33.
Zurück zum Zitat Iannaccone G, Bernardi A, Suriano R, Bianchi CL, Levi M, Turri S, Griffini G (2016) The role of sol–gel chemistry in the low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance. RSC Adv 6:46915CrossRef Iannaccone G, Bernardi A, Suriano R, Bianchi CL, Levi M, Turri S, Griffini G (2016) The role of sol–gel chemistry in the low-temperature formation of ZnO buffer layers for polymer solar cells with improved performance. RSC Adv 6:46915CrossRef
34.
Zurück zum Zitat Wang G, Jiu T, Tang G, Li J, Li P, Song X, Lu F, Fang J (2014) Interface modification of ZnO-based inverted PTB7:PC71BM organic solar cells by cesium stearate and simultaneous enhancement of device parameters. ACS Sustain Chem Eng 2:1331CrossRef Wang G, Jiu T, Tang G, Li J, Li P, Song X, Lu F, Fang J (2014) Interface modification of ZnO-based inverted PTB7:PC71BM organic solar cells by cesium stearate and simultaneous enhancement of device parameters. ACS Sustain Chem Eng 2:1331CrossRef
35.
Zurück zum Zitat Lv L, Lu Q, Ning Y, Lu Z, Wang X, Lou Z, Tang A, Hu Y, Teng F, Yin Y (2014) Self-assembled TiO2 nanorods as electron extraction layer for high-performance inverted polymer solar cells. Chem Mater 27:44CrossRef Lv L, Lu Q, Ning Y, Lu Z, Wang X, Lou Z, Tang A, Hu Y, Teng F, Yin Y (2014) Self-assembled TiO2 nanorods as electron extraction layer for high-performance inverted polymer solar cells. Chem Mater 27:44CrossRef
36.
Zurück zum Zitat Huang X, Lv L, Hu Y, Lou Z, Hou Y, Teng F (2017) Enhanced performance in inverted polymer solar cells employing microwave-annealed sol–gel ZnO as electron transport layers. Org Electron 42:107CrossRef Huang X, Lv L, Hu Y, Lou Z, Hou Y, Teng F (2017) Enhanced performance in inverted polymer solar cells employing microwave-annealed sol–gel ZnO as electron transport layers. Org Electron 42:107CrossRef
37.
Zurück zum Zitat Chen M, Wang X, Yu Y, Pei Z, Bai X, Sun C, Huang R, Wen L (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134CrossRef Chen M, Wang X, Yu Y, Pei Z, Bai X, Sun C, Huang R, Wen L (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134CrossRef
38.
Zurück zum Zitat Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol–gel spin-coating. Thin Solid Films 372:30CrossRef Natsume Y, Sakata H (2000) Zinc oxide films prepared by sol–gel spin-coating. Thin Solid Films 372:30CrossRef
39.
Zurück zum Zitat Wan Q, Yu K, Wang T, Lin C (2003) Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl Phys Lett 83:2253CrossRef Wan Q, Yu K, Wang T, Lin C (2003) Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl Phys Lett 83:2253CrossRef
40.
Zurück zum Zitat Islam MN, Ghosh T, Chopra K, Acharya H (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280:20CrossRef Islam MN, Ghosh T, Chopra K, Acharya H (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280:20CrossRef
41.
Zurück zum Zitat Lee EJ, Heo SW, Han YW, Moon DK (2016) An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. J Mater Chem C 4:2463CrossRef Lee EJ, Heo SW, Han YW, Moon DK (2016) An organic–inorganic hybrid interlayer for improved electron extraction in inverted polymer solar cells. J Mater Chem C 4:2463CrossRef
Metadaten
Titel
Correlating annealing temperature of ZnO nanoparticle electron transport layer with performance of inverted polymer solar cells
verfasst von
Rui Xu
Xiaoxiang Sun
Chang Li
Like Huang
Zhenglong Li
Hongkun Cai
Juan Li
Yaofang Zhang
Jian Ni
Jianjun Zhang
Publikationsdatum
16.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 10/2018
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2279-0

Weitere Artikel der Ausgabe 10/2018

Polymer Bulletin 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.