Skip to main content
Erschienen in:

10.07.2024 | Technical Article

Correlative X-ray Computed Tomography and Optical Microscopy Serial Sectioning Data of Additive Manufactured Ti-6Al-4V

verfasst von: Bryce R. Jolley, Daniel M. Sparkman, Michael G. Chapman, Edwin J. Schwalbach, Michael D. Uchic

Erschienen in: Integrating Materials and Manufacturing Innovation | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An additively manufactured titanium alloy sample has been characterized by X-ray computed tomography and optical microscopy serial sectioning to enable a correlative analysis of internal porosity. Titanium alloy ball bearings were adhered to the surface of the cylindrical sample to aid the registration of the datasets. The characterization data includes five X-ray computed tomography scans from four different instruments and optical microscopy serial sectioning images. The methods and parameters used for collecting these multiple datasets, and reconstructed data for each dataset‘s selected volume of interest are provided. Raw projection data from each computed tomography scan are also offered. Unanticipated artifacts within the serial sectioning experiment are highlighted, and the potential impact of these artifacts is discussed.
Literatur
1.
Zurück zum Zitat Kim FH, Pintar AL, Moylan SP, Garboczi EJ (2019) The influence of x-ray computed tomography acquisition parameters on image quality and probability of detection of additive manufacturing defects. J Manuf Sci Eng 141(11):111002CrossRef Kim FH, Pintar AL, Moylan SP, Garboczi EJ (2019) The influence of x-ray computed tomography acquisition parameters on image quality and probability of detection of additive manufacturing defects. J Manuf Sci Eng 141(11):111002CrossRef
2.
Zurück zum Zitat Du Plessis A, Roux SG, Els J, Booysen G, Blaine DC (2015) Application of microct to the non-destructive testing of an additive manufactured titanium component. Case Stud Nondestruct Test Eval 4:1–7CrossRef Du Plessis A, Roux SG, Els J, Booysen G, Blaine DC (2015) Application of microct to the non-destructive testing of an additive manufactured titanium component. Case Stud Nondestruct Test Eval 4:1–7CrossRef
3.
Zurück zum Zitat Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I, Prangnell PB (2015) Xct analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting. Mater Charact 102:47–61CrossRef Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I, Prangnell PB (2015) Xct analysis of the influence of melt strategies on defect population in Ti-6Al-4V components manufactured by selective electron beam melting. Mater Charact 102:47–61CrossRef
4.
Zurück zum Zitat Maskery I, Aboulkhair N, Corfield M, Tuck C, Clare A, Leach RK, Wildman RD, Ashcroft I, Hague RJ (2016) Quantification and characterisation of porosity in selectively laser melted Al-Si10-Mg using x-ray computed tomography. Mater Charact 111:193–204CrossRef Maskery I, Aboulkhair N, Corfield M, Tuck C, Clare A, Leach RK, Wildman RD, Ashcroft I, Hague RJ (2016) Quantification and characterisation of porosity in selectively laser melted Al-Si10-Mg using x-ray computed tomography. Mater Charact 111:193–204CrossRef
5.
Zurück zum Zitat Liu W, Chen C, Shuai S, Zhao R, Liu L, Wang X, Hu T, Xuan W, Li C, Yu J et al (2020) Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on x-ray computed tomography. Mater Sci Eng, A 797:139981CrossRef Liu W, Chen C, Shuai S, Zhao R, Liu L, Wang X, Hu T, Xuan W, Li C, Yu J et al (2020) Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on x-ray computed tomography. Mater Sci Eng, A 797:139981CrossRef
6.
Zurück zum Zitat Thompson A, Maskery I, Leach RK (2016) X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol 27(7):072001CrossRef Thompson A, Maskery I, Leach RK (2016) X-ray computed tomography for additive manufacturing: a review. Meas Sci Technol 27(7):072001CrossRef
7.
Zurück zum Zitat Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR (2021) X-ray computed tomography. Nat Rev Methods Primers 1(1):1–21CrossRef Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, Manley M, Du Plessis A, Stock SR (2021) X-ray computed tomography. Nat Rev Methods Primers 1(1):1–21CrossRef
8.
Zurück zum Zitat Jolley BR, Uchic MD, Sparkman D, Chapman M, Schwalbach EJ (2021) Application of serial sectioning to evaluate the performance of x-ray computed tomography for quantitative porosity measurements in additively manufactured metals. JOM 73(11):3230–3239CrossRef Jolley BR, Uchic MD, Sparkman D, Chapman M, Schwalbach EJ (2021) Application of serial sectioning to evaluate the performance of x-ray computed tomography for quantitative porosity measurements in additively manufactured metals. JOM 73(11):3230–3239CrossRef
9.
Zurück zum Zitat Sundar V, Snow Z, Keist J, Jones G, Reed R, Reutzel E (2021) Flaw identification in additively manufactured parts using x-ray computed tomography and destructive serial sectioning. J Mater Eng Perform 30(7):4958–4964CrossRef Sundar V, Snow Z, Keist J, Jones G, Reed R, Reutzel E (2021) Flaw identification in additively manufactured parts using x-ray computed tomography and destructive serial sectioning. J Mater Eng Perform 30(7):4958–4964CrossRef
10.
Zurück zum Zitat Kim FH, Pintar A, Obaton A-F, Fox J, Tarr J, Donmez A (2021) Merging experiments and computer simulations in x-ray computed tomography probability of detection analysis of additive manufacturing flaws. NDT & E International 119:102416CrossRef Kim FH, Pintar A, Obaton A-F, Fox J, Tarr J, Donmez A (2021) Merging experiments and computer simulations in x-ray computed tomography probability of detection analysis of additive manufacturing flaws. NDT & E International 119:102416CrossRef
11.
Zurück zum Zitat Ziabari A, Venkatakrishnan SV, Snow Z, Lisovich A, Sprayberry M, Brackman P, Frederick C, Bhattad P, Graham S, Bingham P et al (2023) Enabling rapid x-ray CT characterisation for additive manufacturing using CAD models and deep learning-based reconstruction. Npj Comput Mater 9(1):91CrossRef Ziabari A, Venkatakrishnan SV, Snow Z, Lisovich A, Sprayberry M, Brackman P, Frederick C, Bhattad P, Graham S, Bingham P et al (2023) Enabling rapid x-ray CT characterisation for additive manufacturing using CAD models and deep learning-based reconstruction. Npj Comput Mater 9(1):91CrossRef
12.
Zurück zum Zitat Kalare K, Bajpai M, Sarkar S, Munshi P (2022) Deep neural network for beam hardening artifacts removal in image reconstruction. Appl Intell 52(6):6037–6056CrossRef Kalare K, Bajpai M, Sarkar S, Munshi P (2022) Deep neural network for beam hardening artifacts removal in image reconstruction. Appl Intell 52(6):6037–6056CrossRef
13.
Zurück zum Zitat Jin P, Bouman CA, Sauer KD (2015) A model-based image reconstruction algorithm with simultaneous beam hardening correction for x-ray CT. IEEE Trans Comput Imag 1(3):200–216CrossRef Jin P, Bouman CA, Sauer KD (2015) A model-based image reconstruction algorithm with simultaneous beam hardening correction for x-ray CT. IEEE Trans Comput Imag 1(3):200–216CrossRef
14.
Zurück zum Zitat Abella García M, Martínez Sánchez C, Desco Menéndez M, Vaquero López JJ (2019) Simplified statistical image reconstruction for x-ray CT with beam-hardening artifact compensation. IEEE Trans Med Imaging (2019) Abella García M, Martínez Sánchez C, Desco Menéndez M, Vaquero López JJ (2019) Simplified statistical image reconstruction for x-ray CT with beam-hardening artifact compensation. IEEE Trans Med Imaging (2019)
15.
Zurück zum Zitat Ruth V, Kolditz D, Steiding C, Kalender WA (2017) Metal artifact reduction in x-ray computed tomography using computer-aided design data of implants as prior information. Invest Radiol 52(6):349–359PubMedCrossRef Ruth V, Kolditz D, Steiding C, Kalender WA (2017) Metal artifact reduction in x-ray computed tomography using computer-aided design data of implants as prior information. Invest Radiol 52(6):349–359PubMedCrossRef
16.
Zurück zum Zitat Ghani MU, Karl WC (2019) Fast enhanced ct metal artifact reduction using data domain deep learning. IEEE Trans Comput Imag 6:181–193CrossRef Ghani MU, Karl WC (2019) Fast enhanced ct metal artifact reduction using data domain deep learning. IEEE Trans Comput Imag 6:181–193CrossRef
17.
Zurück zum Zitat Sun S, Brandt M, Easton M (2017) Powder bed fusion processes: an overview. In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, pp. 55–77. Woodhead Publishing, Melbourne Sun S, Brandt M, Easton M (2017) Powder bed fusion processes: an overview. In: Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, pp. 55–77. Woodhead Publishing, Melbourne
18.
Zurück zum Zitat Singh R, Gupta A, Tripathi O, Srivastava S, Singh B, Awasthi A, Rajput S, Sonia P, Singhal P, Saxena KK (2020) Powder bed fusion process in additive manufacturing: an overview. Mater Today: Proc 26:3058–3070 Singh R, Gupta A, Tripathi O, Srivastava S, Singh B, Awasthi A, Rajput S, Sonia P, Singhal P, Saxena KK (2020) Powder bed fusion process in additive manufacturing: an overview. Mater Today: Proc 26:3058–3070
19.
Zurück zum Zitat Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef
20.
Zurück zum Zitat Donegan SP, Schwalbach EJ, Groeber MA (2021) Multimodal registration and fusion of in situ and ex situ metal additive manufacturing data. JOM 73(11):3250–3262CrossRef Donegan SP, Schwalbach EJ, Groeber MA (2021) Multimodal registration and fusion of in situ and ex situ metal additive manufacturing data. JOM 73(11):3250–3262CrossRef
21.
Zurück zum Zitat Porter BC, Rubens DJ, Strang JG, Smith J, Totterman S, Parker KJ (2001) Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers. IEEE Trans Med Imaging 20(4):354–359PubMedCrossRef Porter BC, Rubens DJ, Strang JG, Smith J, Totterman S, Parker KJ (2001) Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers. IEEE Trans Med Imaging 20(4):354–359PubMedCrossRef
22.
Zurück zum Zitat Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC (2008) Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Operative Neurosurgery 62(suppl–1):201–208CrossRef Pfisterer WK, Papadopoulos S, Drumm DA, Smith K, Preul MC (2008) Fiducial versus nonfiducial neuronavigation registration assessment and considerations of accuracy. Operative Neurosurgery 62(suppl–1):201–208CrossRef
23.
Zurück zum Zitat Schicho K, Figl M, Seemann R, Donat M, Pretterklieber ML, Birkfellner W, Reichwein A, Wanschitz F, Kainberger F, Bergmann H et al (2007) Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. J Neurosurg 106(4):704–709PubMedCrossRef Schicho K, Figl M, Seemann R, Donat M, Pretterklieber ML, Birkfellner W, Reichwein A, Wanschitz F, Kainberger F, Bergmann H et al (2007) Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. J Neurosurg 106(4):704–709PubMedCrossRef
24.
Zurück zum Zitat Metzger MC, Rafii A, Holhweg-Majert B, Pham AM, Strong B (2007) Comparison of 4 registration strategies for computer-aided maxillofacial surgery. Otolaryngology-Head and Neck Surg 137(1):93–99CrossRef Metzger MC, Rafii A, Holhweg-Majert B, Pham AM, Strong B (2007) Comparison of 4 registration strategies for computer-aided maxillofacial surgery. Otolaryngology-Head and Neck Surg 137(1):93–99CrossRef
25.
Zurück zum Zitat Taft RM, Kondor S, Grant GT (2011) Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent 106(6):399–408PubMedCrossRef Taft RM, Kondor S, Grant GT (2011) Accuracy of rapid prototype models for head and neck reconstruction. J Prosthet Dent 106(6):399–408PubMedCrossRef
26.
Zurück zum Zitat Izatt MT, Lees D, Mills S, Grant CA, Little JP (2019) Determining a reliably visible and inexpensive surface fiducial marker for use in MRI: a research study in a busy australian radiology department. BMJ Open 9(8):027020CrossRef Izatt MT, Lees D, Mills S, Grant CA, Little JP (2019) Determining a reliably visible and inexpensive surface fiducial marker for use in MRI: a research study in a busy australian radiology department. BMJ Open 9(8):027020CrossRef
27.
Zurück zum Zitat Book TA, Sangid MD (2016) Strain localization in Ti-6Al-4V widmanstätten microstructures produced by additive manufacturing. Mater Charact 122:104–112CrossRef Book TA, Sangid MD (2016) Strain localization in Ti-6Al-4V widmanstätten microstructures produced by additive manufacturing. Mater Charact 122:104–112CrossRef
28.
Zurück zum Zitat Li J, Wasley T, Nguyen T, Ta V, Shephard JD, Stringer J, Smith P, Esenturk E, Connaughton C, Kay R (2016) Hybrid additive manufacturing of 3D electronic systems. J Micromech Microeng 26(10):105005CrossRef Li J, Wasley T, Nguyen T, Ta V, Shephard JD, Stringer J, Smith P, Esenturk E, Connaughton C, Kay R (2016) Hybrid additive manufacturing of 3D electronic systems. J Micromech Microeng 26(10):105005CrossRef
29.
Zurück zum Zitat Byrne O, Coulter F, Glynn M, Jones JF, Ní Annaidh A, O’Cearbhaill ED, Holland DP (2018) Additive manufacture of composite soft pneumatic actuators. Soft Rob 5:726–736CrossRef Byrne O, Coulter F, Glynn M, Jones JF, Ní Annaidh A, O’Cearbhaill ED, Holland DP (2018) Additive manufacture of composite soft pneumatic actuators. Soft Rob 5:726–736CrossRef
30.
Zurück zum Zitat Mathur J, Basu S, Menold J, Meisel NA (2020) Quality assessment of additively manufactured fiducial markers to support augmented reality-based part inspection. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 84003, pp. 11–11024. American Society of Mechanical Engineers Mathur J, Basu S, Menold J, Meisel NA (2020) Quality assessment of additively manufactured fiducial markers to support augmented reality-based part inspection. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 84003, pp. 11–11024. American Society of Mechanical Engineers
31.
Zurück zum Zitat Land WS II, Zhang B, Ziegert J, Davies A (2015) In-situ metrology system for laser powder bed fusion additive process. Procedia Manufacturing 1:393–403CrossRef Land WS II, Zhang B, Ziegert J, Davies A (2015) In-situ metrology system for laser powder bed fusion additive process. Procedia Manufacturing 1:393–403CrossRef
32.
Zurück zum Zitat Valle B, Lietaert K, Antler N, Newman J, Xiao E, Coeck S (2019) Evaluation of a learning tool for in-situ monitoring of metal additive manufacturing. Preprints Valle B, Lietaert K, Antler N, Newman J, Xiao E, Coeck S (2019) Evaluation of a learning tool for in-situ monitoring of metal additive manufacturing. Preprints
33.
Zurück zum Zitat DeMott R, Collins P, Kong C, Liao X, Ringer S, Primig S (2020) 3D electron backscatter diffraction study of \(\alpha \) lath morphology in additively manufactured Ti-6Al-4V. Ultramicroscopy 218:113073PubMedCrossRef DeMott R, Collins P, Kong C, Liao X, Ringer S, Primig S (2020) 3D electron backscatter diffraction study of \(\alpha \) lath morphology in additively manufactured Ti-6Al-4V. Ultramicroscopy 218:113073PubMedCrossRef
34.
Zurück zum Zitat Pyka G, Kerckhofs G, Papantoniou I, Speirs M, Schrooten J, Wevers M (2013) Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials 6(10):4737–4757PubMedPubMedCentralCrossRef Pyka G, Kerckhofs G, Papantoniou I, Speirs M, Schrooten J, Wevers M (2013) Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures. Materials 6(10):4737–4757PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kerckhofs G, Pyka G, Moesen M, Van Bael S, Schrooten J, Wevers M (2013) High-resolution microfocus x-ray computed tomography for 3D surface roughness measurements of additive manufactured porous materials. Adv Eng Mater 15(3):153–158CrossRef Kerckhofs G, Pyka G, Moesen M, Van Bael S, Schrooten J, Wevers M (2013) High-resolution microfocus x-ray computed tomography for 3D surface roughness measurements of additive manufactured porous materials. Adv Eng Mater 15(3):153–158CrossRef
36.
Zurück zum Zitat Townsend A, Senin N, Blunt L, Leach R, Taylor J (2016) Surface texture metrology for metal additive manufacturing: a review. Precis Eng 46:34–47CrossRef Townsend A, Senin N, Blunt L, Leach R, Taylor J (2016) Surface texture metrology for metal additive manufacturing: a review. Precis Eng 46:34–47CrossRef
37.
Zurück zum Zitat Oliveira FB, Stolfi A, Bartscher M, De Chiffre L, Neuschaefer-Rube U (2016) Experimental investigation of surface determination process on multi-material components for dimensional computed tomography. Case Stud Nondestruct Test Eval 6:93–103CrossRef Oliveira FB, Stolfi A, Bartscher M, De Chiffre L, Neuschaefer-Rube U (2016) Experimental investigation of surface determination process on multi-material components for dimensional computed tomography. Case Stud Nondestruct Test Eval 6:93–103CrossRef
38.
Zurück zum Zitat Chapman MG, Shah MN, Donegan SP, Scott JM, Shade PA, Menasche D, Uchic MD (2021) AFRL additive manufacturing modeling series: challenge 4, 3D reconstruction of an IN625 high-energy diffraction microscopy sample using multi-modal serial sectioning. Integr Mater Manuf Innov 10:129–141CrossRef Chapman MG, Shah MN, Donegan SP, Scott JM, Shade PA, Menasche D, Uchic MD (2021) AFRL additive manufacturing modeling series: challenge 4, 3D reconstruction of an IN625 high-energy diffraction microscopy sample using multi-modal serial sectioning. Integr Mater Manuf Innov 10:129–141CrossRef
39.
Zurück zum Zitat Geels K, Fowler DB, Kopp W-U, Rückert M (2007) Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis, and Hardness Testing, vol 46. ASTM International, West ConshohockenCrossRef Geels K, Fowler DB, Kopp W-U, Rückert M (2007) Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis, and Hardness Testing, vol 46. ASTM International, West ConshohockenCrossRef
40.
Zurück zum Zitat Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682PubMedCrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682PubMedCrossRef
41.
Zurück zum Zitat Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H (2017) Trainable weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33(15):2424–2426PubMedCrossRef Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Sebastian Seung H (2017) Trainable weka segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33(15):2424–2426PubMedCrossRef
42.
Zurück zum Zitat Ding L, Goshtasby A, Satter M (2001) Volume image registration by template matching. Image Vis Comput 19(12):821–832CrossRef Ding L, Goshtasby A, Satter M (2001) Volume image registration by template matching. Image Vis Comput 19(12):821–832CrossRef
43.
Zurück zum Zitat Sarvaiya JN, Patnaik S, Bombaywala S (2009) Image registration by template matching using normalized cross-correlation. In: 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 819–822. IEEE Sarvaiya JN, Patnaik S, Bombaywala S (2009) Image registration by template matching using normalized cross-correlation. In: 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies, pp. 819–822. IEEE
44.
Zurück zum Zitat Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7(6):418–419PubMedCrossRef Preibisch S, Saalfeld S, Schindelin J, Tomancak P (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7(6):418–419PubMedCrossRef
45.
Zurück zum Zitat Shannon R (1976) Crystal physics, diffraction, theoretical and general crystallography. Acta Cryst. A 32:751–767CrossRef Shannon R (1976) Crystal physics, diffraction, theoretical and general crystallography. Acta Cryst. A 32:751–767CrossRef
46.
Zurück zum Zitat Randle V, Engler O (2000) Introduction to texture analysis: macrotexture, microtexture and orientation mapping. CRC Press, LondonCrossRef Randle V, Engler O (2000) Introduction to texture analysis: macrotexture, microtexture and orientation mapping. CRC Press, LondonCrossRef
47.
Zurück zum Zitat Jolley BR, Uchic MD, Sparkman D, Chapman M, Schwalbach EJ (2024) Correlative x-ray computed tomography and optical microscopy serial sectioning data of additive manufactured Ti-6Al-4V using external fiducial markers. Materials Data Facility. https://doi.org/10.18126/t27t-9iao Jolley BR, Uchic MD, Sparkman D, Chapman M, Schwalbach EJ (2024) Correlative x-ray computed tomography and optical microscopy serial sectioning data of additive manufactured Ti-6Al-4V using external fiducial markers. Materials Data Facility. https://​doi.​org/​10.​18126/​t27t-9iao
Metadaten
Titel
Correlative X-ray Computed Tomography and Optical Microscopy Serial Sectioning Data of Additive Manufactured Ti-6Al-4V
verfasst von
Bryce R. Jolley
Daniel M. Sparkman
Michael G. Chapman
Edwin J. Schwalbach
Michael D. Uchic
Publikationsdatum
10.07.2024
Verlag
Springer International Publishing
Erschienen in
Integrating Materials and Manufacturing Innovation / Ausgabe 3/2024
Print ISSN: 2193-9764
Elektronische ISSN: 2193-9772
DOI
https://doi.org/10.1007/s40192-024-00367-1

Weitere Artikel der Ausgabe 3/2024

Integrating Materials and Manufacturing Innovation 3/2024 Zur Ausgabe

Thematic Section: Harnessing the Power of Materials Data

How Well Do Large Language Models Understand Tables in Materials Science?

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.