Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRENGTH AND PLASTICITY

Corrosion Behavior of Nitrided Titanium Alloy β-CEZ and 9S20K Carbon Steel

verfasst von: F. Z. Benlahreche, E. Nouicer, L. Yahia, A. Nouicer

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This work is the study of the influence of liquid nitriding treatment on the electrochemical and mechanical behavior of two metallic materials, the titanium based alloy β-CEZ and 9S20K carbon steel. The obtained micrographs clearly showed the structural changes happened to occur during this treatment and allowed to delimit the nitrided layer. The X-ray diffraction of the treated samples permits identification of different titanium and iron nitrides formed. The Vickers microhardness tests carried out on perpendicular sections of the nitrided samples (of β-CEZ, 9S20K) showed the increase of surface hardness. Electrochemical characterisation results showed the increase in the corrosion resistance of the nitrided 9S20K steel and the decrease of the nitrided β-CEZ alloy corrosion resistance in comparison with untreated specimens. Obtained results showed that the nitriding treatment allowed improving the mechanical and electrochemical behavior of 9S20K steel, but the nitriding treatment only improved the mechanical properties of the titanium alloy and its electrochemical behavior became worse.
Literatur
1.
Zurück zum Zitat C. E. Pinedo and W. A. Monteiro, “Surface hardening by plasma nitriding on high chromium alloy steel,” J. Mater. Sci. Lett. 20, 147–150 (2001). CrossRef C. E. Pinedo and W. A. Monteiro, “Surface hardening by plasma nitriding on high chromium alloy steel,” J. Mater. Sci. Lett. 20, 147–150 (2001). CrossRef
2.
Zurück zum Zitat A. Alsaran, M. Karakan, and A. Celik, “The investigation of mechanical properties of ion-nitrided AISI 5140 low-alloy steel,” Mater. Charact. 48, 323–327 (2002). CrossRef A. Alsaran, M. Karakan, and A. Celik, “The investigation of mechanical properties of ion-nitrided AISI 5140 low-alloy steel,” Mater. Charact. 48, 323–327 (2002). CrossRef
3.
Zurück zum Zitat S. Y. Sirin and E. Kaluc, “Structural surface characterization of ion nitrided AISI 4340 steel,” Mater. Des. 36, 741–747 (2012). CrossRef S. Y. Sirin and E. Kaluc, “Structural surface characterization of ion nitrided AISI 4340 steel,” Mater. Des. 36, 741–747 (2012). CrossRef
4.
Zurück zum Zitat F. Z. Benlahreche and E. Nouicer, “Improvement of surface properties of low carbon steel by nitriding treatment,” Acta Phys. Pol. A 131, 20–23 (2017). CrossRef F. Z. Benlahreche and E. Nouicer, “Improvement of surface properties of low carbon steel by nitriding treatment,” Acta Phys. Pol. A 131, 20–23 (2017). CrossRef
5.
Zurück zum Zitat I. Altinsoy, K. G. Onder, EfeF. G. Celebi, and C. Bindal, “Gas nitriding behavior of 34CrAlNi 7 nitriding steel,” Acta Phys. Pol., A 125, 414–416 (2014). CrossRef I. Altinsoy, K. G. Onder, EfeF. G. Celebi, and C. Bindal, “Gas nitriding behavior of 34CrAlNi 7 nitriding steel,” Acta Phys. Pol., A 125, 414–416 (2014). CrossRef
6.
Zurück zum Zitat J. Kamiński, K. Małkiewicz, J. Rębiś, and T. Wierzchoń, “The Effect of glow discharge nitriding on the corrosion resistance of stainless steel orthodontic arches in artificial saliva solution,” Arch. Metall. Mater. 65, 375–384 (2020). J. Kamiński, K. Małkiewicz, J. Rębiś, and T. Wierzchoń, “The Effect of glow discharge nitriding on the corrosion resistance of stainless steel orthodontic arches in artificial saliva solution,” Arch. Metall. Mater. 65, 375–384 (2020).
7.
Zurück zum Zitat E. Nouicer, F. Z. Benlahreche, and A. Nouicer, “Spectroscopic characterization of titanium alloy surface in a biological medium,” Acta Phys. Pol., A 131, 28–31 (2017). CrossRef E. Nouicer, F. Z. Benlahreche, and A. Nouicer, “Spectroscopic characterization of titanium alloy surface in a biological medium,” Acta Phys. Pol., A 131, 28–31 (2017). CrossRef
8.
Zurück zum Zitat Z. Cai, T. Shafer, I. Watanabe, M. E. Nunn, and T. Okabe, “Electrochemical characterization of cast titanium alloys,” Biomaterials 24, 213–218 (2003). CrossRef Z. Cai, T. Shafer, I. Watanabe, M. E. Nunn, and T. Okabe, “Electrochemical characterization of cast titanium alloys,” Biomaterials 24, 213–218 (2003). CrossRef
9.
Zurück zum Zitat I. Gurappa, “Characterization of different materials for corrosion resistance under simulated body fluid conditions,” Mater. Charact. 49, 73–79 (2002). CrossRef I. Gurappa, “Characterization of different materials for corrosion resistance under simulated body fluid conditions,” Mater. Charact. 49, 73–79 (2002). CrossRef
10.
Zurück zum Zitat Y. Z. Huang and D. J. Blackwood, “Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates,” Electrochim. Acta 51, 1099–1107 (2005). CrossRef Y. Z. Huang and D. J. Blackwood, “Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates,” Electrochim. Acta 51, 1099–1107 (2005). CrossRef
11.
Zurück zum Zitat C. E. B. Marino and L. H. Mascaro, “EIS characterization of a Ti-dental implant in artificial saliva media: Dissolution process of the oxide barrier,” J. Electroanal. Chem. 568, 115–120 (2004). CrossRef C. E. B. Marino and L. H. Mascaro, “EIS characterization of a Ti-dental implant in artificial saliva media: Dissolution process of the oxide barrier,” J. Electroanal. Chem. 568, 115–120 (2004). CrossRef
12.
Zurück zum Zitat E. P. Utomo, S. Herbirowo, V. Puspasari, and Y. N. Thaha, “Characteristics and corrosion behavior of Ti–30Nb–5Sn alloys in histidine solution with various NaCl concentrations,” Int. J. Corros. Scale Inhib. 10, 592–601 (2021). E. P. Utomo, S. Herbirowo, V. Puspasari, and Y. N. Thaha, “Characteristics and corrosion behavior of Ti–30Nb–5Sn alloys in histidine solution with various NaCl concentrations,” Int. J. Corros. Scale Inhib. 10, 592–601 (2021).
13.
Zurück zum Zitat I. Gurrappa and D. Reddy Venugopala, “Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions,” J. Alloys Compd. 390, 270–274 (2005). CrossRef I. Gurrappa and D. Reddy Venugopala, “Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions,” J. Alloys Compd. 390, 270–274 (2005). CrossRef
14.
Zurück zum Zitat M. M. Khaled, B. S. Yilbas, I. Y. Al-Qaradawi, P. G. Coleman, D. Abdulmalik, Z. S. Seddigi, A. Abulkibash, B. F. Abu-Sharkh, and M. M. Emad, “Corrosion properties of duplex treated Ti–6Al–4V alloy in chloride media using electrochemical and positron annihilation spectroscopy techniques,” Surf. Coat. Technol. 201, 932–937 (2006). CrossRef M. M. Khaled, B. S. Yilbas, I. Y. Al-Qaradawi, P. G. Coleman, D. Abdulmalik, Z. S. Seddigi, A. Abulkibash, B. F. Abu-Sharkh, and M. M. Emad, “Corrosion properties of duplex treated Ti–6Al–4V alloy in chloride media using electrochemical and positron annihilation spectroscopy techniques,” Surf. Coat. Technol. 201, 932–937 (2006). CrossRef
15.
Zurück zum Zitat Y. Khelfaoui, M. Kerkar, A. Bali, and F. Dalard, “Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel,” Surf. Coat. Technol. 200, 4523–4529 (2006). CrossRef Y. Khelfaoui, M. Kerkar, A. Bali, and F. Dalard, “Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel,” Surf. Coat. Technol. 200, 4523–4529 (2006). CrossRef
16.
Zurück zum Zitat C. Monticelli, A. Frignani, A. Bellosi, G. Brunoro, and G. Trabanelli, “The corrosion behavior of titanium diboride in neutral chloride solution,” Corros. Sci. 43, 979–992 (2001). CrossRef C. Monticelli, A. Frignani, A. Bellosi, G. Brunoro, and G. Trabanelli, “The corrosion behavior of titanium diboride in neutral chloride solution,” Corros. Sci. 43, 979–992 (2001). CrossRef
17.
Zurück zum Zitat E. Almeida, M. R. Costa, N. De Cristofaro, N. Mora, R. Catalá, J. M. Puente, and J. M. Bastidas, “Titanium passivated lacquered tinplate cans in contact with foods,” Corros. Eng., Sci. Technol. 40, 158–164 (2005). CrossRef E. Almeida, M. R. Costa, N. De Cristofaro, N. Mora, R. Catalá, J. M. Puente, and J. M. Bastidas, “Titanium passivated lacquered tinplate cans in contact with foods,” Corros. Eng., Sci. Technol. 40, 158–164 (2005). CrossRef
18.
Zurück zum Zitat C. Franz, G. Besserdich, V. Schulze, H. Mueller, and D. Loehe, “Influence of transformation plasticity on residual stresses and distortions due to the heat treatment of steels with different carbon contents,” J. Phys. IV 120, 481–488 (2004). C. Franz, G. Besserdich, V. Schulze, H. Mueller, and D. Loehe, “Influence of transformation plasticity on residual stresses and distortions due to the heat treatment of steels with different carbon contents,” J. Phys. IV 120, 481–488 (2004).
19.
Zurück zum Zitat M. Slovacek, “Application of numerical simulation of heat treatment in industry,” J. Phys. IV 120, 753–760 (2004). M. Slovacek, “Application of numerical simulation of heat treatment in industry,” J. Phys. IV 120, 753–760 (2004).
20.
Zurück zum Zitat S. Srikanth, P. Saravanan, A. Joseph, and K. Ravi, “Surface modification of commercial low-carbon steel using glow discharge nitrogen plasma and its characterization,” J. Mater. Eng. Perform. 22, 2610–2622 (2013). CrossRef S. Srikanth, P. Saravanan, A. Joseph, and K. Ravi, “Surface modification of commercial low-carbon steel using glow discharge nitrogen plasma and its characterization,” J. Mater. Eng. Perform. 22, 2610–2622 (2013). CrossRef
21.
Zurück zum Zitat S. P. Brühl, A. Cabo, W. Tuckart, and G. Prieto, “Tribological behavior of nitrided and nitrocarburized carbon steel used to produce engine parts,” Ind. Lubr. Tribol. 68, 125–133 (2016). CrossRef S. P. Brühl, A. Cabo, W. Tuckart, and G. Prieto, “Tribological behavior of nitrided and nitrocarburized carbon steel used to produce engine parts,” Ind. Lubr. Tribol. 68, 125–133 (2016). CrossRef
22.
Zurück zum Zitat M. Vaghani, S. A. Vasanwala, and A. K. Desai, “Stainless steel as a structural material: state of review,” Int. J. Engineering Research and Applications. 4, 657–662 (2014). M. Vaghani, S. A. Vasanwala, and A. K. Desai, “Stainless steel as a structural material: state of review,” Int. J. Engineering Research and Applications. 4, 657–662 (2014).
23.
Zurück zum Zitat N. Karthiga, J. M. Praveena, A. Deepika, A. J. A. Fathima, R. Bhuvaneshwari, G. D. Christina, V. D. Mary, DeviN. Renuga, T. Umasankareswari, and S. Rajendran, “Influence of Roseday-5 tablet on corrosion resistance of SS 316L in artificial saliva,” Int. J. Corros. Scale Inhib. 9, 595–606 (2020). N. Karthiga, J. M. Praveena, A. Deepika, A. J. A. Fathima, R. Bhuvaneshwari, G. D. Christina, V. D. Mary, DeviN. Renuga, T. Umasankareswari, and S. Rajendran, “Influence of Roseday-5 tablet on corrosion resistance of SS 316L in artificial saliva,” Int. J. Corros. Scale Inhib. 9, 595–606 (2020).
24.
Zurück zum Zitat A. Alamiery, E. Mahmoudi, and T. Allami, “Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies,” Int. J. Corros. Scale Inhib. 10, 749–765 (2021). A. Alamiery, E. Mahmoudi, and T. Allami, “Corrosion inhibition of low-carbon steel in hydrochloric acid environment using a Schiff base derived from pyrrole: gravimetric and computational studies,” Int. J. Corros. Scale Inhib. 10, 749–765 (2021).
25.
Zurück zum Zitat T. Bell, Y. Sun, and A. Suhadi, “Environmental and technical aspects of plasma nitrocarburising,” Vacuum 59, 14–23 (2000). CrossRef T. Bell, Y. Sun, and A. Suhadi, “Environmental and technical aspects of plasma nitrocarburising,” Vacuum 59, 14–23 (2000). CrossRef
26.
Zurück zum Zitat L. H. Chiu, C. H. Wu, and H. Chang, “Wear behavior of nitrocarburized JIS SKD61 tool steel,” Wear 253, 778–786 (2002). CrossRef L. H. Chiu, C. H. Wu, and H. Chang, “Wear behavior of nitrocarburized JIS SKD61 tool steel,” Wear 253, 778–786 (2002). CrossRef
27.
Zurück zum Zitat F. T. Hoffmann and P. Mayr, ASM Handbook: Friction, Lubrication, and Wear Technology (ASM International, Metal Park, 1992), vol. 18, p. 1783. F. T. Hoffmann and P. Mayr, ASM Handbook: Friction, Lubrication, and Wear Technology (ASM International, Metal Park, 1992), vol. 18, p. 1783.
28.
Zurück zum Zitat B. Podgornik and S. Hogmark, “Surface modification to improve friction and galling properties of forming tools,” J. Mater. Process. Technol. 174, 334–341 (2006). CrossRef B. Podgornik and S. Hogmark, “Surface modification to improve friction and galling properties of forming tools,” J. Mater. Process. Technol. 174, 334–341 (2006). CrossRef
29.
Zurück zum Zitat H. Aydin, A. Bayram, and S. Topçu, “Effect of different nitriding processes on the friction coefficient of 304 austenitic and 420 martensitic stainless steels,” Ind. Lubr. Tribol. 65, 27–36 (2013). CrossRef H. Aydin, A. Bayram, and S. Topçu, “Effect of different nitriding processes on the friction coefficient of 304 austenitic and 420 martensitic stainless steels,” Ind. Lubr. Tribol. 65, 27–36 (2013). CrossRef
Metadaten
Titel
Corrosion Behavior of Nitrided Titanium Alloy β-CEZ and 9S20K Carbon Steel
verfasst von
F. Z. Benlahreche
E. Nouicer
L. Yahia
A. Nouicer
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060059

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe