Skip to main content
Erschienen in: Wireless Networks 7/2017

19.04.2016

CoSFR: coordinated soft frequency reuse for OFDMA-based multi-cell networks with non-uniform user distribution

Erschienen in: Wireless Networks | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inter-cell interference coordination (ICIC) technology has been extensively studied to improve service quality of users near cell boundaries. Most ICIC schemes available make an assumption that users in the same cell are distributed uniformly. This is reasonable but incomplete. Mobility may result in users distributed non-uniformly, so this paper proposes a novel semi-static ICIC scheme, coordinated soft frequency reuse (CoSFR), for multi-cell networks with non-uniform user distribution. A finer cell partition structure with a tunable parameter r is proposed. With this structure, dedicated user classification rules and opportunistic scheduling strategies are designed for different cells. Assisted by a simple but efficient coordination scheme, a cell with overloaded cell-edge traffic, named aggressor cell, calls adjacent neighboring cells for help. Some reuse opportunities can be created after coordination and the aggressor cell can expand its cell-edge band to alleviate the overloaded state. No additional entity is required for being compatible with the flat network structure of LTE/LTE-Advanced. In addition, CoSFR can deal with the scenario that more than one cell suffering overloaded cell-edge traffic and it can also be applied to irregular cells with minimal modifications. Simulation results show that more than 97.4 % users are satisfied with their data rate. Average cell-edge user throughput is raised substantially and the outage probability declines significantly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, we will use the notions subchannel and PRB interchangeably.
 
2
User position information can be collected by GPS or other positioning systems. These information can be transmitted via the physical uplink control channel (PUCCH) defined in LTE.
 
3
Without misunderstanding, we omit the superscript k for simplicity.
 
4
It deserves noting that users may have different demands.
 
5
Additionally, we provide the list of used symbols in this section and onward in Table 1.
 
6
We assume there is only one aggressor cell here. The more complex scenario will be discussed later on.
 
7
We cannot provide the solution to the optimization problem since it is not solvable in such a large scale network within a reasonable time using regular devices available.
 
8
When the aggressor cells are also direct neighbors, the system should turn to other load balance technologies for help.
 
Literatur
1.
Zurück zum Zitat Molisch, A. F. (2011). Wireless communications (2nd ed.). Hoboken, NJ: Wiley. Molisch, A. F. (2011). Wireless communications (2nd ed.). Hoboken, NJ: Wiley.
2.
Zurück zum Zitat 3GPP Technical Specification 36.214. (2008). E-utra and e-utran overall description; stage 2 (release 8), V8.7.0 (2008-12). www.3gpp.org. 3GPP Technical Specification 36.214. (2008). E-utra and e-utran overall description; stage 2 (release 8), V8.7.0 (2008-12). www.​3gpp.​org.
3.
Zurück zum Zitat 3GPP Technical Specification 36.913. (2008). Requirements for further advancements for e-utra (release 8), V8.0.0 (2008-06). www.3gpp.org. 3GPP Technical Specification 36.913. (2008). Requirements for further advancements for e-utra (release 8), V8.0.0 (2008-06). www.​3gpp.​org.
4.
Zurück zum Zitat Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking (1st ed.). Upper Saddle River, NJ: Pearson Education. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking (1st ed.). Upper Saddle River, NJ: Pearson Education.
5.
Zurück zum Zitat Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4G networks. IEEE Communications Magazine, 47(4), 74–81.CrossRef Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4G networks. IEEE Communications Magazine, 47(4), 74–81.CrossRef
8.
Zurück zum Zitat Siemens. (2005). R1-050738: Interference mitigation-considerations and results on frequency reuse (2005-09). www.3gpp.org. Siemens. (2005). R1-050738: Interference mitigation-considerations and results on frequency reuse (2005-09). www.​3gpp.​org.
9.
Zurück zum Zitat Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys and Tutorials, 15(4), 1642–1670.CrossRef Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in OFDMA-based cellular networks. IEEE Communications Surveys and Tutorials, 15(4), 1642–1670.CrossRef
10.
Zurück zum Zitat Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.CrossRef Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.CrossRef
11.
Zurück zum Zitat Ali, S. H., & Leung, V. C. M. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRef Ali, S. H., & Leung, V. C. M. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRef
12.
Zurück zum Zitat Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.CrossRef Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.CrossRef
13.
Zurück zum Zitat Lopez-Perez, D., Chu, X. L., & Zhang, J. (2012). Dynamic downlink frequency and power allocation in OFDMA cellular networks. IEEE Transactions on Communications, 60(10), 2904–2914.CrossRef Lopez-Perez, D., Chu, X. L., & Zhang, J. (2012). Dynamic downlink frequency and power allocation in OFDMA cellular networks. IEEE Transactions on Communications, 60(10), 2904–2914.CrossRef
14.
Zurück zum Zitat Zhu, J., & Yang, H.-C. (2011). Performance analysis of low-complexity dual-cell random beamforming transmission with user scheduling. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–11.CrossRef Zhu, J., & Yang, H.-C. (2011). Performance analysis of low-complexity dual-cell random beamforming transmission with user scheduling. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–11.CrossRef
15.
Zurück zum Zitat Qian, M., Hardjawana, W., Li, Y., Vucetic, B., Shi, J., & Yang, X. (2012). Inter-cell interference coordination through adaptive soft frequency reuse in lte networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1618–1623). Qian, M., Hardjawana, W., Li, Y., Vucetic, B., Shi, J., & Yang, X. (2012). Inter-cell interference coordination through adaptive soft frequency reuse in lte networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1618–1623).
16.
Zurück zum Zitat Yu, Y., Dutkiewicz, E., Huang, X., & Mueck, M. (2011). Load distribution aware soft frequency reuse for inter-cell interference mitigation and throughput maximization in lte networks. In Proceedings of the IEEE International Conference on Communication (ICC) (pp. 1–6). Yu, Y., Dutkiewicz, E., Huang, X., & Mueck, M. (2011). Load distribution aware soft frequency reuse for inter-cell interference mitigation and throughput maximization in lte networks. In Proceedings of the IEEE International Conference on Communication (ICC) (pp. 1–6).
17.
Zurück zum Zitat Mao, X., Maaref, A., & Teo, K. H. (2008). Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) (pp. 4782–4787). Mao, X., Maaref, A., & Teo, K. H. (2008). Adaptive soft frequency reuse for inter-cell interference coordination in SC-FDMA based 3GPP LTE uplinks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) (pp. 4782–4787).
18.
Zurück zum Zitat Li, L., Liang, D., & Wang, W. (2009). A novel semi-dynamic inter-cell interference coordination scheme based on user grouping. In Proceedings of the IEEE 70th Vehicular Technology Conference (VTC Fall) (pp. 1–5). Li, L., Liang, D., & Wang, W. (2009). A novel semi-dynamic inter-cell interference coordination scheme based on user grouping. In Proceedings of the IEEE 70th Vehicular Technology Conference (VTC Fall) (pp. 1–5).
19.
Zurück zum Zitat Yoon, J., Arslan, M. Y., Sundaresan, K., Krishnamurthy, S. V., & Banerjee, S. (2012). A distributed resource management framework for interference mitigation in OFDMA femtocell networks. In Proceedings of the ACM 13th International Symposium Mobile Ad Hoc Networking and Computing (MobiHoc) (pp. 235–244). Yoon, J., Arslan, M. Y., Sundaresan, K., Krishnamurthy, S. V., & Banerjee, S. (2012). A distributed resource management framework for interference mitigation in OFDMA femtocell networks. In Proceedings of the ACM 13th International Symposium Mobile Ad Hoc Networking and Computing (MobiHoc) (pp. 235–244).
20.
Zurück zum Zitat Zhao, N., Yu, F. R., & Leung, V. C. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef
21.
Zurück zum Zitat Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2011). Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 10(12), 4294–4305.CrossRef Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2011). Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 10(12), 4294–4305.CrossRef
22.
Zurück zum Zitat Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2012). Analytical evaluation of fractional frequency reuse for heterogeneous cellular networks. IEEE Transactions on Communications, 60(7), 2029–2039.CrossRef Novlan, T. D., Ganti, R. K., Ghosh, A., & Andrews, J. G. (2012). Analytical evaluation of fractional frequency reuse for heterogeneous cellular networks. IEEE Transactions on Communications, 60(7), 2029–2039.CrossRef
23.
Zurück zum Zitat Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.CrossRef Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications, 59(11), 3122–3134.CrossRef
24.
Zurück zum Zitat Stolyar, A. L., & Viswanathan, H. (2008). Self-organizing dynamic fractional frequency reuse in OFDMA systems. In Proceedings of the IEEE 27th International Conference on Computer Communications (INFOCOM) (pp. 1364–1372). Stolyar, A. L., & Viswanathan, H. (2008). Self-organizing dynamic fractional frequency reuse in OFDMA systems. In Proceedings of the IEEE 27th International Conference on Computer Communications (INFOCOM) (pp. 1364–1372).
25.
Zurück zum Zitat Maqbool, M., Godlewski, P., Coupechoux, M., & Kelif, J. M. (2010). Analytical performance evaluation of various frequency reuse and scheduling schemes in cellular OFDMA networks. Performance Evaluation, 67(4), 318–337.CrossRef Maqbool, M., Godlewski, P., Coupechoux, M., & Kelif, J. M. (2010). Analytical performance evaluation of various frequency reuse and scheduling schemes in cellular OFDMA networks. Performance Evaluation, 67(4), 318–337.CrossRef
26.
Zurück zum Zitat Lei, C., & Di, Y. (2009). Soft frequency reuse in large networks with irregular cell pattern: How much gain to expect? In Proceedings of the IEEE 20th International Symposium Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1467–1471). Lei, C., & Di, Y. (2009). Soft frequency reuse in large networks with irregular cell pattern: How much gain to expect? In Proceedings of the IEEE 20th International Symposium Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1467–1471).
27.
Zurück zum Zitat Lei, C., & Di, Y. (2010). Beyond conventional fractional frequency reuse for networks with irregular cell layout: An optimization approach and performance evaluation. In Proceedings of the 5th International Wireless Internet Conference (WICON) (pp. 1–7). Lei, C., & Di, Y. (2010). Beyond conventional fractional frequency reuse for networks with irregular cell layout: An optimization approach and performance evaluation. In Proceedings of the 5th International Wireless Internet Conference (WICON) (pp. 1–7).
28.
Zurück zum Zitat Zhuang, H. C., Shmelkin, D., Luo, Z. Z., Pikhletsky, M., & Khafizov, F. (2013). Dynamic spectrum management for intercell interference coordination in LTE networks based on traffic patterns. IEEE Transactions on Vehicular Technology, 62(5), 1924–1934.CrossRef Zhuang, H. C., Shmelkin, D., Luo, Z. Z., Pikhletsky, M., & Khafizov, F. (2013). Dynamic spectrum management for intercell interference coordination in LTE networks based on traffic patterns. IEEE Transactions on Vehicular Technology, 62(5), 1924–1934.CrossRef
29.
Zurück zum Zitat Gonzalez, D., Garcia-Lozano, M., Boque, S. R., & Lee, D. S. (2013). Optimization of soft frequency reuse for irregular LTE macrocellular networks. IEEE Transactions on Wireless Communications, 12(5), 2410–2423.CrossRef Gonzalez, D., Garcia-Lozano, M., Boque, S. R., & Lee, D. S. (2013). Optimization of soft frequency reuse for irregular LTE macrocellular networks. IEEE Transactions on Wireless Communications, 12(5), 2410–2423.CrossRef
30.
Zurück zum Zitat Tao, X., Xu, F., Rehman, W. U., Xu, Y., & Li, X. (2013). A generic mathematical model based on fuzzy set theory for frequency reuse in cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 861–869.CrossRef Tao, X., Xu, F., Rehman, W. U., Xu, Y., & Li, X. (2013). A generic mathematical model based on fuzzy set theory for frequency reuse in cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 861–869.CrossRef
31.
Zurück zum Zitat Assaad, M. (2008). Optimal fractional frequency reuse (FFR) in multicellular OFDMA system. In Proceedings of the IEEE 68th Vehicular Technology Conference (VTC Fall) (pp. 1822–1826). Assaad, M. (2008). Optimal fractional frequency reuse (FFR) in multicellular OFDMA system. In Proceedings of the IEEE 68th Vehicular Technology Conference (VTC Fall) (pp. 1822–1826).
32.
Zurück zum Zitat Yu, Y., Dutkiewicz, E., Huang, X., & Mueck, M. (2013). Downlink resource allocation for next generation wireless networks with inter-cell interference. IEEE Transactions on Wireless Communications, 12(4), 1783–1793.CrossRef Yu, Y., Dutkiewicz, E., Huang, X., & Mueck, M. (2013). Downlink resource allocation for next generation wireless networks with inter-cell interference. IEEE Transactions on Wireless Communications, 12(4), 1783–1793.CrossRef
33.
Zurück zum Zitat 3GPP Technical Specification 36.423. (2014). E-utran x2 aplication protocol (release 12), V12.3.0 (2014-09). www.3gpp.org. 3GPP Technical Specification 36.423. (2014). E-utran x2 aplication protocol (release 12), V12.3.0 (2014-09). www.​3gpp.​org.
34.
Zurück zum Zitat Lei, H., Zhang, L., Zhang, X., & Yang, D. (2007). A novel multi-cell OFDMA system structure using fractional frequency reuse. in Proceedings of the IEEE 18th International Symposium Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1250–1254). Lei, H., Zhang, L., Zhang, X., & Yang, D. (2007). A novel multi-cell OFDMA system structure using fractional frequency reuse. in Proceedings of the IEEE 18th International Symposium Personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1250–1254).
35.
Zurück zum Zitat Sternad, M., Svensson, T., Ottosson, T., Ahlen, A., Svensson, A., & Brunstrom, A. (2007). Towards systems beyond 3G based on adaptive OFDMA transmission. Proceedings of the IEEE, 95(12), 2432–2455.CrossRef Sternad, M., Svensson, T., Ottosson, T., Ahlen, A., Svensson, A., & Brunstrom, A. (2007). Towards systems beyond 3G based on adaptive OFDMA transmission. Proceedings of the IEEE, 95(12), 2432–2455.CrossRef
36.
Zurück zum Zitat Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys and Tutorials, 11(3), 92–106.CrossRef Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys and Tutorials, 11(3), 92–106.CrossRef
37.
Zurück zum Zitat Liu, T., Yang, C., & Yang, L.-L. (2010). A low-complexity subcarrier-power allocation scheme for frequency-division multiple-access systems. IEEE Transactions on Wireless Communications, 9(5), 1564–1570.CrossRef Liu, T., Yang, C., & Yang, L.-L. (2010). A low-complexity subcarrier-power allocation scheme for frequency-division multiple-access systems. IEEE Transactions on Wireless Communications, 9(5), 1564–1570.CrossRef
38.
Zurück zum Zitat Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C. C. J. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.CrossRef Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C. C. J. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.CrossRef
39.
Zurück zum Zitat Novlan, T. D., Andrews, J. G., Sohn, I., Ganti, R. K., & Ghosh, A. (2010). Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) (pp. 1–5). Novlan, T. D., Andrews, J. G., Sohn, I., Ganti, R. K., & Ghosh, A. (2010). Comparison of fractional frequency reuse approaches in the OFDMA cellular downlink. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) (pp. 1–5).
40.
Zurück zum Zitat Xu, Z. K., Li, G. Y., Yang, C. Y., & Zhu, X. L. (2012). Throughput and optimal threshold for FFR schemes in OFDMA cellular networks. IEEE Transactions on Wireless Communications, 11(8), 2776–2785. Xu, Z. K., Li, G. Y., Yang, C. Y., & Zhu, X. L. (2012). Throughput and optimal threshold for FFR schemes in OFDMA cellular networks. IEEE Transactions on Wireless Communications, 11(8), 2776–2785.
41.
Zurück zum Zitat Lee, D., Li, G. Y., & Tang, S. (2013). Intercell interference coordination for LTE systems. IEEE Transactions on Vehicular Technology, 62(9), 4408–4420.CrossRef Lee, D., Li, G. Y., & Tang, S. (2013). Intercell interference coordination for LTE systems. IEEE Transactions on Vehicular Technology, 62(9), 4408–4420.CrossRef
42.
Zurück zum Zitat Govindasamy, D. W. B. (2013). Adaptive wireless communications: MIMO channels and networks. New York, NY: Cambridge University Press. Govindasamy, D. W. B. (2013). Adaptive wireless communications: MIMO channels and networks. New York, NY: Cambridge University Press.
43.
Zurück zum Zitat Bohge, M., Gross, J., & Wolisz, A. (2009). Optimal power masking in soft frequency reuse based OFDMA networks. In Proceedings of the European Wireless Conference (EW) (pp. 162–166). Bohge, M., Gross, J., & Wolisz, A. (2009). Optimal power masking in soft frequency reuse based OFDMA networks. In Proceedings of the European Wireless Conference (EW) (pp. 162–166).
Metadaten
Titel
CoSFR: coordinated soft frequency reuse for OFDMA-based multi-cell networks with non-uniform user distribution
Publikationsdatum
19.04.2016
Erschienen in
Wireless Networks / Ausgabe 7/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1247-6

Weitere Artikel der Ausgabe 7/2017

Wireless Networks 7/2017 Zur Ausgabe

Neuer Inhalt