Skip to main content

2019 | OriginalPaper | Buchkapitel

Cost-Effective Catalytic Materials for AOP Treatment Units

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Catalysts (homogeneous or heterogeneous) can be utilized to improve the performance of conventional advanced oxidation processes (AOPs). In general, catalyst activity, selectivity, stability, simplicity of preparation, preparation time, cost, nontoxicity, availability, recycling capability, environmental suitability, etc. can be the important parameters in the catalyst selection. High costs, cumbersome preparations, and environmental unsuitability can usually hinder the industrial applicability of a catalyst. In this chapter, catalytic AOPs (Fenton-based processes, catalytic ozonation, heterogeneous photocatalysis, catalytic wet air oxidation, and catalytic supercritical water oxidation), related catalytic materials, and cost-effective catalytic materials used in these processes are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Litter MI, Quici N (2010) Photochemical advanced oxidation processes for water and wastewater treatment. Rec Pat Eng 4:217–241CrossRef Litter MI, Quici N (2010) Photochemical advanced oxidation processes for water and wastewater treatment. Rec Pat Eng 4:217–241CrossRef
2.
Zurück zum Zitat Covinich LG, Bengoechea DI, Fenoglio RJ, Area MC (2014) Advanced oxidation processes for wastewater treatment in the pulp and paper industry: a review. Am J Environ Eng 4(3):56–70CrossRef Covinich LG, Bengoechea DI, Fenoglio RJ, Area MC (2014) Advanced oxidation processes for wastewater treatment in the pulp and paper industry: a review. Am J Environ Eng 4(3):56–70CrossRef
3.
Zurück zum Zitat Mota ALN, Albuquerque LF, Beltrame LTC, Chiavone-Filho O, Machulek A Jr, Nascimento CAO (2008) Advanced oxidation processes and their application in the petroleum industry: a review. Brazil J Petrol Gas 2(3):122–142 Mota ALN, Albuquerque LF, Beltrame LTC, Chiavone-Filho O, Machulek A Jr, Nascimento CAO (2008) Advanced oxidation processes and their application in the petroleum industry: a review. Brazil J Petrol Gas 2(3):122–142
4.
Zurück zum Zitat Jafarinejad S (2017) Petroleum waste treatment and pollution control. 1st edn. Elsevier Inc., Butterworth-Heinemann, USACrossRef Jafarinejad S (2017) Petroleum waste treatment and pollution control. 1st edn. Elsevier Inc., Butterworth-Heinemann, USACrossRef
5.
Zurück zum Zitat Badriyha BN, Song W, Ravindran V, Pirbazari M (2007) Advanced oxidation processes for destruction of endocrine disrupting chemicals in water treatment: comparison of free-radical reaction mechanisms, pathways and kinetics. 2007 AIChE Annual Meeting Badriyha BN, Song W, Ravindran V, Pirbazari M (2007) Advanced oxidation processes for destruction of endocrine disrupting chemicals in water treatment: comparison of free-radical reaction mechanisms, pathways and kinetics. 2007 AIChE Annual Meeting
6.
Zurück zum Zitat Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2010) Advanced oxidation processes, degradation of priority compounds by UV and UV-oxidation. TECHNEAU, deliverable number D 2.4.1.2b, Dec 2010 Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2010) Advanced oxidation processes, degradation of priority compounds by UV and UV-oxidation. TECHNEAU, deliverable number D 2.4.1.2b, Dec 2010
7.
Zurück zum Zitat Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global NEST J 10(3):376–385 Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment – a mini review. Global NEST J 10(3):376–385
8.
Zurück zum Zitat Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414CrossRef Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28(6):353–414CrossRef
9.
Zurück zum Zitat Remya N, Lin JG (2011) Current status of microwave application in wastewater treatment – a review. Chem Eng J 166:797–813CrossRef Remya N, Lin JG (2011) Current status of microwave application in wastewater treatment – a review. Chem Eng J 166:797–813CrossRef
10.
Zurück zum Zitat Glaze WH (1987) Drinking-water treatment with ozone. Environ Sci Technol 21(3):224–230CrossRef Glaze WH (1987) Drinking-water treatment with ozone. Environ Sci Technol 21(3):224–230CrossRef
11.
Zurück zum Zitat Fu J, Kyzas GZ (2014) Wet air oxidation for the decolorization of dye wastewater: an overview of the last two decades. Chin J Catal 35:1–7CrossRef Fu J, Kyzas GZ (2014) Wet air oxidation for the decolorization of dye wastewater: an overview of the last two decades. Chin J Catal 35:1–7CrossRef
12.
Zurück zum Zitat Santos MSF, Alves A, Madeira LM (2011) Paraquat removal from water by oxidation with Fenton’s reagent. Chem Eng J 175:279–290CrossRef Santos MSF, Alves A, Madeira LM (2011) Paraquat removal from water by oxidation with Fenton’s reagent. Chem Eng J 175:279–290CrossRef
13.
Zurück zum Zitat Jafarinejad S (2015) Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Inter Res J Appl Basic Sci 9(10):1758–1774 Jafarinejad S (2015) Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Inter Res J Appl Basic Sci 9(10):1758–1774
14.
Zurück zum Zitat Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollution Rep 1:167–176CrossRef Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollution Rep 1:167–176CrossRef
15.
Zurück zum Zitat Jafarinejad S, Abolghasemi H, Golzary A, Moosavian MA, Maragheh MG (2010) Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide under supercritical water condition. J Super Fluid 52:292–297CrossRef Jafarinejad S, Abolghasemi H, Golzary A, Moosavian MA, Maragheh MG (2010) Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide under supercritical water condition. J Super Fluid 52:292–297CrossRef
16.
Zurück zum Zitat Jafarinejad S (2014) Supercritical water oxidation (SCWO) in oily wastewater treatment. National e-conference on advances in basic sciences and engineering (AEBSCONF), Iran Jafarinejad S (2014) Supercritical water oxidation (SCWO) in oily wastewater treatment. National e-conference on advances in basic sciences and engineering (AEBSCONF), Iran
17.
Zurück zum Zitat Jafarinejad S (2015) Ozonation advanced oxidation process and place of its use in oily sludge and wastewater treatment. 1st international conference on environmental engineering (eiconf), Tehran, Iran Jafarinejad S (2015) Ozonation advanced oxidation process and place of its use in oily sludge and wastewater treatment. 1st international conference on environmental engineering (eiconf), Tehran, Iran
18.
Zurück zum Zitat Jafarinejad S (2015) Heterogeneous photocatalysis oxidation process and use of it for oily wastewater treatment. 1st international conference on environmental engineering (eiconf), Tehran, Iran Jafarinejad S (2015) Heterogeneous photocatalysis oxidation process and use of it for oily wastewater treatment. 1st international conference on environmental engineering (eiconf), Tehran, Iran
19.
Zurück zum Zitat Sabet JK, Jafarinejad S, Golzary A (2014) Supercritical water oxidation for the recovery of dysprosium ion from aqueous solutions. Inter Res J Appl Basic Sci 8(8):1079–1083 Sabet JK, Jafarinejad S, Golzary A (2014) Supercritical water oxidation for the recovery of dysprosium ion from aqueous solutions. Inter Res J Appl Basic Sci 8(8):1079–1083
20.
Zurück zum Zitat Song H, You JA, Chen C, Zhang H, Ji XZ, Li C, Yang Y, Xu N, Huang J (2016) Manganese functionalized mesoporous molecular sieves Ti-HMS as a Fenton-like catalyst for dyes wastewater purification by advanced oxidation processes. J Environ Chem Eng 4:4653–4660CrossRef Song H, You JA, Chen C, Zhang H, Ji XZ, Li C, Yang Y, Xu N, Huang J (2016) Manganese functionalized mesoporous molecular sieves Ti-HMS as a Fenton-like catalyst for dyes wastewater purification by advanced oxidation processes. J Environ Chem Eng 4:4653–4660CrossRef
21.
Zurück zum Zitat Kim KH, Ihm SK (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34CrossRef Kim KH, Ihm SK (2011) Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. J Hazard Mater 186:16–34CrossRef
22.
Zurück zum Zitat Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003CrossRef Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003CrossRef
23.
Zurück zum Zitat Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377CrossRef Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377CrossRef
24.
Zurück zum Zitat Loures CCA, Alcântara MAK, Filho HJI, Teixeira ACSC, Silva FT, Paiva TCB, Samanamud GRL (2013) Advanced oxidative degradation processes: fundamentals and applications. Inter Rev Chem Eng 5(2):102–120 Loures CCA, Alcântara MAK, Filho HJI, Teixeira ACSC, Silva FT, Paiva TCB, Samanamud GRL (2013) Advanced oxidative degradation processes: fundamentals and applications. Inter Rev Chem Eng 5(2):102–120
25.
Zurück zum Zitat Jelonek P, Neczaj E (2012) The use of advanced oxidation processes (AOP) for the treatment of landfill leachate. Inżynieria i Ochrona Środowiska 15(2):203–217 Jelonek P, Neczaj E (2012) The use of advanced oxidation processes (AOP) for the treatment of landfill leachate. Inżynieria i Ochrona Środowiska 15(2):203–217
27.
Zurück zum Zitat Kalra SS, Mohan S, Sinha A, Gurdeep Singh G (2011) Advanced oxidation processes for treatment of textile and dye wastewater: a review. 2nd international conference on environmental science and development IPCBEE, vol 4. IACSIT Press, Singapore, pp 271–275 Kalra SS, Mohan S, Sinha A, Gurdeep Singh G (2011) Advanced oxidation processes for treatment of textile and dye wastewater: a review. 2nd international conference on environmental science and development IPCBEE, vol 4. IACSIT Press, Singapore, pp 271–275
28.
Zurück zum Zitat Burgos AJ, Rodriguez PU, Lopez JS (2015) Advanced oxidation processes (AOPs), series: advanced treatments, technology fact sheets for effluent treatment plants of textile industry, INDITEX, FS-AVA-001, 1-27 Burgos AJ, Rodriguez PU, Lopez JS (2015) Advanced oxidation processes (AOPs), series: advanced treatments, technology fact sheets for effluent treatment plants of textile industry, INDITEX, FS-AVA-001, 1-27
29.
Zurück zum Zitat Sharma S, Ruparelia JP, Patel ML (2011) A general review on advanced oxidation processes for waste water treatment. Institute of Technology, Nirma University, Ahmedabad – 382 481, 08-10 December, 1–7 Sharma S, Ruparelia JP, Patel ML (2011) A general review on advanced oxidation processes for waste water treatment. Institute of Technology, Nirma University, Ahmedabad – 382 481, 08-10 December, 1–7
30.
Zurück zum Zitat Yu J, Savage PE (2000) Phenol oxidation over CuO/Al2O3 in supercritical water. Appl Catal Environ 28(3–4):275–288CrossRef Yu J, Savage PE (2000) Phenol oxidation over CuO/Al2O3 in supercritical water. Appl Catal Environ 28(3–4):275–288CrossRef
31.
Zurück zum Zitat Matsumura Y, Urase T, Yamamoto K, Nunoura T (2002) Carbon catalyzed supercritical water oxidation of phenol. J Super Fluids 22(2):149–156CrossRef Matsumura Y, Urase T, Yamamoto K, Nunoura T (2002) Carbon catalyzed supercritical water oxidation of phenol. J Super Fluids 22(2):149–156CrossRef
33.
Zurück zum Zitat Blanco M, Martinez A, Marcaide A, Aranzabe E, Aranzabe A (2014) Heterogeneous Fenton catalyst for the efficient removal of Azo dyes in water. Am J Anal Chem 5:490–499CrossRef Blanco M, Martinez A, Marcaide A, Aranzabe E, Aranzabe A (2014) Heterogeneous Fenton catalyst for the efficient removal of Azo dyes in water. Am J Anal Chem 5:490–499CrossRef
34.
Zurück zum Zitat Sahu O, Paul D, Chaudhari PK (2014) A comparatively study on thermal and advance oxidation wastewater treatment process: review. J Chem Eng Chem Res 1(6):353–364 Sahu O, Paul D, Chaudhari PK (2014) A comparatively study on thermal and advance oxidation wastewater treatment process: review. J Chem Eng Chem Res 1(6):353–364
35.
Zurück zum Zitat Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420CrossRef Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2420CrossRef
36.
Zurück zum Zitat Somorjai GA, Rioux RM (2005) High technology catalysts towards 100% selectivity. Fabrication, characterization and reaction studies. Catal Today 100:201–215CrossRef Somorjai GA, Rioux RM (2005) High technology catalysts towards 100% selectivity. Fabrication, characterization and reaction studies. Catal Today 100:201–215CrossRef
37.
Zurück zum Zitat Fechete I, Wang Y, Vedrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189:2–27CrossRef Fechete I, Wang Y, Vedrine JC (2012) The past, present and future of heterogeneous catalysis. Catal Today 189:2–27CrossRef
38.
Zurück zum Zitat Buthiyappan A, Aziz ARA, Daud WMAW (2016) Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev Chem Eng 32(1):1–47CrossRef Buthiyappan A, Aziz ARA, Daud WMAW (2016) Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev Chem Eng 32(1):1–47CrossRef
39.
Zurück zum Zitat Abramov VO, Abramov OV, Gekhman AE, Kuznetsov VM, Price GJ (2006) Ultrasonic intensification of ozone and electrochemical destruction of 1,3-dinitrobenzene and 2,4-dinitrotoluene. Ultrason Sonochem 13:303–307CrossRef Abramov VO, Abramov OV, Gekhman AE, Kuznetsov VM, Price GJ (2006) Ultrasonic intensification of ozone and electrochemical destruction of 1,3-dinitrobenzene and 2,4-dinitrotoluene. Ultrason Sonochem 13:303–307CrossRef
40.
Zurück zum Zitat Arena F, Chio RD, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta 431:101–109CrossRef Arena F, Chio RD, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta 431:101–109CrossRef
41.
Zurück zum Zitat Luck F (1996) A review of industrial catalytic wet air oxidation processes. Catal Today 27:195–202CrossRef Luck F (1996) A review of industrial catalytic wet air oxidation processes. Catal Today 27:195–202CrossRef
42.
Zurück zum Zitat Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910CrossRef Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910CrossRef
43.
Zurück zum Zitat Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review. Appl Catal Environ 176–177:249–265CrossRef Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – a review. Appl Catal Environ 176–177:249–265CrossRef
44.
Zurück zum Zitat Eisenhauer HR (1964) Oxidation of phenolic wastes. J Water Pollut Control Fed 36:1116–1128 Eisenhauer HR (1964) Oxidation of phenolic wastes. J Water Pollut Control Fed 36:1116–1128
45.
Zurück zum Zitat Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148:172–177CrossRef Sun JH, Sun SP, Fan MH, Guo HQ, Qiao LP, Sun RX (2007) A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process. J Hazard Mater 148:172–177CrossRef
46.
Zurück zum Zitat Jiang C, Pang S, Ouyang F, Ma J, Jiang J (2010) A new insight into Fenton and Fenton like processes for water treatment. J Hazard Mater 174:813–817CrossRef Jiang C, Pang S, Ouyang F, Ma J, Jiang J (2010) A new insight into Fenton and Fenton like processes for water treatment. J Hazard Mater 174:813–817CrossRef
47.
Zurück zum Zitat Awaleh MO, Soubaneh YD (2014) Waste water treatment in chemical industries: the concept and current technologies. Hydrol Current Res 5(1):1–12 Awaleh MO, Soubaneh YD (2014) Waste water treatment in chemical industries: the concept and current technologies. Hydrol Current Res 5(1):1–12
48.
Zurück zum Zitat Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51CrossRef Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51CrossRef
49.
Zurück zum Zitat Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59CrossRef Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59CrossRef
50.
Zurück zum Zitat Mackul'ak T, Prousek J, Švorc LU (2011) Degradation of atrazine by Fenton and modified Fenton reactions. Monatsh Chem 142:561–567CrossRef Mackul'ak T, Prousek J, Švorc LU (2011) Degradation of atrazine by Fenton and modified Fenton reactions. Monatsh Chem 142:561–567CrossRef
51.
Zurück zum Zitat Muruganandham M, Suri RPS, Jafari S, Sillanpää M, Lee GJ, Wu JJ, Swaminathan M (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. Int J Photoenergy 2014:21 p, Article ID 821674. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2014/821674 Muruganandham M, Suri RPS, Jafari S, Sillanpää M, Lee GJ, Wu JJ, Swaminathan M (2014) Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. Int J Photoenergy 2014:21 p, Article ID 821674. Hindawi Publishing Corporation. http://​dx.​doi.​org/​10.​1155/​2014/​821674
52.
Zurück zum Zitat Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572CrossRef Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572CrossRef
53.
Zurück zum Zitat Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787CrossRef Wang N, Zheng T, Zhang G, Wang P (2016) A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng 4:762–787CrossRef
54.
Zurück zum Zitat He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci 39:97–109CrossRef He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci 39:97–109CrossRef
55.
Zurück zum Zitat Luiz DB, Jose HJ, Moreira RFPM (2012) A discussion paper on challenges and proposals for advanced treatments for potabilization of wastewater in the food industry. In: Valdez B (ed) Scientific, health and social aspects of the food industry. InTech, Rijeka, Croatia Luiz DB, Jose HJ, Moreira RFPM (2012) A discussion paper on challenges and proposals for advanced treatments for potabilization of wastewater in the food industry. In: Valdez B (ed) Scientific, health and social aspects of the food industry. InTech, Rijeka, Croatia
56.
Zurück zum Zitat Powell RM, Puls RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922CrossRef Powell RM, Puls RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922CrossRef
57.
Zurück zum Zitat Warren KD, Arnold RG, Bishop TL, Lindholm LG, Betterton EA (1995) Kinetics and mechanism of reductive dehalogenation of carbon tetrachloride using zerovalence metals. J Hazard Mater 41:217–227CrossRef Warren KD, Arnold RG, Bishop TL, Lindholm LG, Betterton EA (1995) Kinetics and mechanism of reductive dehalogenation of carbon tetrachloride using zerovalence metals. J Hazard Mater 41:217–227CrossRef
58.
Zurück zum Zitat Joo SH, Feitz AJ, Waite TD (1995) X oxidative degradation of the carbothioate herbicide, molinate using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247CrossRef Joo SH, Feitz AJ, Waite TD (1995) X oxidative degradation of the carbothioate herbicide, molinate using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247CrossRef
59.
Zurück zum Zitat Babuponnusami A, Muthukumar K (2012) Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separ Purif Tech 98:130–135CrossRef Babuponnusami A, Muthukumar K (2012) Removal of phenol by heterogenous photo electro Fenton-like process using nano-zero valent iron. Separ Purif Tech 98:130–135CrossRef
60.
Zurück zum Zitat Bigda RJ (1995) Consider Fenton’s chemistry for wastewater treatment. Chem Eng Prog 91:62–66 Bigda RJ (1995) Consider Fenton’s chemistry for wastewater treatment. Chem Eng Prog 91:62–66
61.
Zurück zum Zitat Mesquita I, Matos LC, Duarte F, Maldonado-Hódar FJ, Mendes A, Madeira LM (2012) Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. J Hazard Mater 237–238:30–37CrossRef Mesquita I, Matos LC, Duarte F, Maldonado-Hódar FJ, Mendes A, Madeira LM (2012) Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon. J Hazard Mater 237–238:30–37CrossRef
62.
Zurück zum Zitat Duarte F, Maldonado-Hódar FJ, Madeira LM (2011) Influence of the characteristics of carbon materials on their behaviour as heterogeneous Fenton catalysts for the elimination of the azo dye Orange II from aqueous solutions. Appl Catal B 103:109–115CrossRef Duarte F, Maldonado-Hódar FJ, Madeira LM (2011) Influence of the characteristics of carbon materials on their behaviour as heterogeneous Fenton catalysts for the elimination of the azo dye Orange II from aqueous solutions. Appl Catal B 103:109–115CrossRef
63.
Zurück zum Zitat Yuan SH, Gou N, Alshawabkeh AN, Gu AZ (2013) Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere 93:2796–2804CrossRef Yuan SH, Gou N, Alshawabkeh AN, Gu AZ (2013) Efficient degradation of contaminants of emerging concerns by a new electro-Fenton process with Ti/MMO cathode. Chemosphere 93:2796–2804CrossRef
64.
Zurück zum Zitat Sabhi S, Kiwi J (2001) Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res 35:1994–2002CrossRef Sabhi S, Kiwi J (2001) Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water Res 35:1994–2002CrossRef
65.
Zurück zum Zitat Sanabria NR, Molina R, Moreno S (2012) Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. Int J Photoenergy 2012:17 p. Article ID 864104. Hindawi Publishing Corporation. doi: 10.1155/2012/864104 CrossRef Sanabria NR, Molina R, Moreno S (2012) Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. Int J Photoenergy 2012:17 p. Article ID 864104. Hindawi Publishing Corporation. doi: 10.​1155/​2012/​864104 CrossRef
66.
Zurück zum Zitat Zhou T, Lim TT, XH W (2011) Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands. Water Res 45:2915–2924CrossRef Zhou T, Lim TT, XH W (2011) Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands. Water Res 45:2915–2924CrossRef
67.
Zurück zum Zitat Yang XJ, Tian PF, Zhang XM, Yu X, Wu T, Xu J, Han YF (2014) The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation. AIChE J 61:166–176CrossRef Yang XJ, Tian PF, Zhang XM, Yu X, Wu T, Xu J, Han YF (2014) The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation. AIChE J 61:166–176CrossRef
68.
Zurück zum Zitat Zhang C, Zhou MH, Ren GB, Yu XM, Ma L, Yang J, Yu FK (2015) Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424CrossRef Zhang C, Zhou MH, Ren GB, Yu XM, Ma L, Yang J, Yu FK (2015) Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424CrossRef
69.
Zurück zum Zitat Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1–3):1–16CrossRef Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1–3):1–16CrossRef
70.
Zurück zum Zitat Moreno S, Sanabria N, Molina R (2008) Chapter 4. Recent tendencies in the synthesis of pillared clays for phenol oxidation. In: Heikkine E (ed) Focus on water resource research. Nova Science Publisher, New York, NY, USA, pp 185–209 Moreno S, Sanabria N, Molina R (2008) Chapter 4. Recent tendencies in the synthesis of pillared clays for phenol oxidation. In: Heikkine E (ed) Focus on water resource research. Nova Science Publisher, New York, NY, USA, pp 185–209
71.
Zurück zum Zitat Rao TSRP, Dhar GM (1998) Recent advanced in basic and applied aspects of industrial catalysis. Elsevier Science B.V., Amsterdam, The Netherlands Rao TSRP, Dhar GM (1998) Recent advanced in basic and applied aspects of industrial catalysis. Elsevier Science B.V., Amsterdam, The Netherlands
72.
Zurück zum Zitat Sanabria NR, Molina R, Moreno S (2012) Raschig rings based on pillared clays: efficient reusable catalysts for oxidation of phenol. J Advan Oxid Technol 15(1):117–124 Sanabria NR, Molina R, Moreno S (2012) Raschig rings based on pillared clays: efficient reusable catalysts for oxidation of phenol. J Advan Oxid Technol 15(1):117–124
73.
Zurück zum Zitat Kim JK, Martinez F, Metcalfe IS (2007) The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for degradation of p-chlorophenol. Catal Today 124(3–4):224–231CrossRef Kim JK, Martinez F, Metcalfe IS (2007) The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for degradation of p-chlorophenol. Catal Today 124(3–4):224–231CrossRef
74.
Zurück zum Zitat Hassan H, Hameed BH (2011) Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of reactive blue 4. Chem Eng J 171(3):912–918CrossRef Hassan H, Hameed BH (2011) Fe-clay as effective heterogeneous Fenton catalyst for the decolorization of reactive blue 4. Chem Eng J 171(3):912–918CrossRef
75.
Zurück zum Zitat Nguyen TD, Phan NH, Do MH, Ngo KT (2011) Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185(2–3):653–661CrossRef Nguyen TD, Phan NH, Do MH, Ngo KT (2011) Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: fabrication, characterization and heterogeneous Fenton oxidation of methyl orange. J Hazard Mater 185(2–3):653–661CrossRef
76.
Zurück zum Zitat Tian SH, YT T, Chen DS, Chen X, Xiong Y (2011) Degradation of acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem Eng J 169(1–3):31–37CrossRef Tian SH, YT T, Chen DS, Chen X, Xiong Y (2011) Degradation of acid Orange II at neutral pH using Fe2(MoO4)3 as a heterogeneous Fenton-like catalyst. Chem Eng J 169(1–3):31–37CrossRef
77.
Zurück zum Zitat Dukkanci M, Gunduz G, Yilmaz S, Prihod’ko RV (2010) Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater 181(1–3):343–350CrossRef Dukkanci M, Gunduz G, Yilmaz S, Prihod’ko RV (2010) Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater 181(1–3):343–350CrossRef
78.
Zurück zum Zitat Idel-aouad R, Valiente M, Yaacoubi A, Tanouti B, Lopez-Mesas M (2011) Rapid decolourization and mineralization of the azo dye C.I. Acid red 14 by heterogeneous Fenton reaction. J Hazard Mater 186(1):745–750CrossRef Idel-aouad R, Valiente M, Yaacoubi A, Tanouti B, Lopez-Mesas M (2011) Rapid decolourization and mineralization of the azo dye C.I. Acid red 14 by heterogeneous Fenton reaction. J Hazard Mater 186(1):745–750CrossRef
79.
Zurück zum Zitat Kuˇsi’c H, Koprivanac N, Selanec I (2006) Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere 65(1):65–73CrossRef Kuˇsi’c H, Koprivanac N, Selanec I (2006) Fe-exchanged zeolite as the effective heterogeneous Fenton-type catalyst for the organic pollutant minimization: UV irradiation assistance. Chemosphere 65(1):65–73CrossRef
80.
Zurück zum Zitat Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B 51(3):165–170CrossRef Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B 51(3):165–170CrossRef
81.
Zurück zum Zitat de la Plata GBO, Alfano OM, Cassano AE (2010) Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms. Appl Catal B 95(1–-2):14–25CrossRef de la Plata GBO, Alfano OM, Cassano AE (2010) Decomposition of 2-chlorophenol employing goethite as Fenton catalyst II: reaction kinetics of the heterogeneous Fenton and photo-Fenton mechanisms. Appl Catal B 95(1–-2):14–25CrossRef
82.
Zurück zum Zitat Costa RCC, Moura FCC, Ardisson JD, Fabris JD, Lago RM (2008) Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B 83(1–-2):131–139CrossRef Costa RCC, Moura FCC, Ardisson JD, Fabris JD, Lago RM (2008) Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl Catal B 83(1–-2):131–139CrossRef
83.
Zurück zum Zitat Moura FCC, Araujo MH, Costa RCC et al (2005) Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60(8):1118–1123CrossRef Moura FCC, Araujo MH, Costa RCC et al (2005) Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere 60(8):1118–1123CrossRef
84.
Zurück zum Zitat Sun SP, Lemley AT (2011) P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. J Molec Catal A 349(1–2):71–79CrossRef Sun SP, Lemley AT (2011) P-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. J Molec Catal A 349(1–2):71–79CrossRef
85.
Zurück zum Zitat Mart’ınez F, Calleja G, Melero JA, Molina R (2005) Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl Catal B 60(3–4):181–190CrossRef Mart’ınez F, Calleja G, Melero JA, Molina R (2005) Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Appl Catal B 60(3–4):181–190CrossRef
86.
Zurück zum Zitat Molina R, Mart’ınez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B 66(3–4):198–207CrossRef Molina R, Mart’ınez F, Melero JA, Bremner DH, Chakinala AG (2006) Mineralization of phenol by a heterogeneous ultrasound/Fe-SBA-15/H2O2 process: multivariate study by factorial design of experiments. Appl Catal B 66(3–4):198–207CrossRef
87.
Zurück zum Zitat Shukla P, Wang S, Sun H, Ang HM, Tad’e M (2010) Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chem Eng J 164(1):255–260CrossRef Shukla P, Wang S, Sun H, Ang HM, Tad’e M (2010) Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chem Eng J 164(1):255–260CrossRef
88.
Zurück zum Zitat Galeano LA, Vicente MA, Gil A (2011) Treatment of municipal leachate of landfill by fenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillared montmorillonite as active catalyst. Chem Eng J 178:146–153CrossRef Galeano LA, Vicente MA, Gil A (2011) Treatment of municipal leachate of landfill by fenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillared montmorillonite as active catalyst. Chem Eng J 178:146–153CrossRef
89.
Zurück zum Zitat Luo M, Bowden D, Brimblecombe P (2009) Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Appl Catal B 85(3–-4):201–206CrossRef Luo M, Bowden D, Brimblecombe P (2009) Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Appl Catal B 85(3–-4):201–206CrossRef
90.
Zurück zum Zitat Molina CB, Casas JA, Zazo JA, JJ R’ı (2006) A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem Eng J 118(1–-2):29–35CrossRef Molina CB, Casas JA, Zazo JA, JJ R’ı (2006) A comparison of Al-Fe and Zr-Fe pillared clays for catalytic wet peroxide oxidation. Chem Eng J 118(1–-2):29–35CrossRef
91.
Zurück zum Zitat Munoz M, Dominguez CM, de Pedro ZM, Quintanilla A, Casas JA, Rodriguez JJ (2016) Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. J Chem Technol Biotechnol 91(11):2882–2887CrossRef Munoz M, Dominguez CM, de Pedro ZM, Quintanilla A, Casas JA, Rodriguez JJ (2016) Degradation of imidazolium-based ionic liquids by catalytic wet peroxide oxidation with carbon and magnetic iron catalysts. J Chem Technol Biotechnol 91(11):2882–2887CrossRef
92.
Zurück zum Zitat Munoz M, de Pedro ZM, Menendez N, Casas JA, Rodriguez JJ (2013) Appl Catal Environ 136–137:218–224 Munoz M, de Pedro ZM, Menendez N, Casas JA, Rodriguez JJ (2013) Appl Catal Environ 136–137:218–224
93.
Zurück zum Zitat Xu L, Wang J (2011) A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater 186:256–264CrossRef Xu L, Wang J (2011) A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater 186:256–264CrossRef
94.
102.
Zurück zum Zitat Martínez F, Pariente MI, Ángel J, Botas JA, Melero JA, Rubalcaba A (2012) Influence of preoxidizing treatments on the preparation of iron-containing activated carbons for catalytic wet peroxide oxidation of phenol. J Chem Technol Biotechnol 87:880–886. http://dx.doi.org/10.1002/jctb.2744 CrossRef Martínez F, Pariente MI, Ángel J, Botas JA, Melero JA, Rubalcaba A (2012) Influence of preoxidizing treatments on the preparation of iron-containing activated carbons for catalytic wet peroxide oxidation of phenol. J Chem Technol Biotechnol 87:880–886. http://​dx.​doi.​org/​10.​1002/​jctb.​2744 CrossRef
104.
Zurück zum Zitat Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRef Ezzatahmadi N, Ayoko GA, Millar GJ, Speight R, Yan C, Li J, Li S, Zhu J, Xi Y (2017) Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem Eng J 312:336–350CrossRef
105.
Zurück zum Zitat Tušar NN, Maucec D, Rangus M, Arcon I, Mazaj M, Cotman M, Pintar A, Kaucic V (2012) Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv Funct Mater 22:820–826CrossRef Tušar NN, Maucec D, Rangus M, Arcon I, Mazaj M, Cotman M, Pintar A, Kaucic V (2012) Manganese functionalized silicate nanoparticles as a Fenton-type catalyst for water purification by advanced oxidation processes (AOP). Adv Funct Mater 22:820–826CrossRef
106.
Zurück zum Zitat Yao Y, Cai Y, Wu G, Wei F, Li X, Chen H, Wang S (2015) Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water. J Hazard Mater 296:128–137CrossRef Yao Y, Cai Y, Wu G, Wei F, Li X, Chen H, Wang S (2015) Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-like reaction in water. J Hazard Mater 296:128–137CrossRef
107.
Zurück zum Zitat Rhadfi T, Piquemal JY, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A (2010) Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal A Gen 386:132–139CrossRef Rhadfi T, Piquemal JY, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A (2010) Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal A Gen 386:132–139CrossRef
108.
Zurück zum Zitat Karthikeyan S, Boopathy R, Sekaran G (2015) In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. J Colloid Interface Sci 448:163–174CrossRef Karthikeyan S, Boopathy R, Sekaran G (2015) In situ generation of hydroxyl radical by cobalt oxide supported porous carbon enhance removal of refractory organics in tannery dyeing wastewater. J Colloid Interface Sci 448:163–174CrossRef
109.
Zurück zum Zitat Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRef Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRef
110.
Zurück zum Zitat Pereira MC, Oliveira LCA, Murad E (2012) Iron oxide catalysts: Fenton and Fenton-like reactions – a review. Clay Miner 47:285–302CrossRef Pereira MC, Oliveira LCA, Murad E (2012) Iron oxide catalysts: Fenton and Fenton-like reactions – a review. Clay Miner 47:285–302CrossRef
111.
Zurück zum Zitat Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35CrossRef Rahim Pouran S, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35CrossRef
112.
Zurück zum Zitat Martins RC, Henriques LR, Quinta-Ferreira RM (2013) Catalytic activity of low cost materials for pollutants abatement by Fenton’s process. Chem Eng Sci 100:225–233CrossRef Martins RC, Henriques LR, Quinta-Ferreira RM (2013) Catalytic activity of low cost materials for pollutants abatement by Fenton’s process. Chem Eng Sci 100:225–233CrossRef
113.
Zurück zum Zitat Lee H, Kim BH, Park YK, Kim SJ, Jung SC (2015) Application of recycled zero-valent iron nanoparticle to the treatment of wastewater containing nitrobenzene. J Nanomater 2015:8 p. Article ID 392537. Hindawi Publishing Corporation. http://dx.doi.org/10.1155/2015/392537 Lee H, Kim BH, Park YK, Kim SJ, Jung SC (2015) Application of recycled zero-valent iron nanoparticle to the treatment of wastewater containing nitrobenzene. J Nanomater 2015:8 p. Article ID 392537. Hindawi Publishing Corporation. http://​dx.​doi.​org/​10.​1155/​2015/​392537
114.
Zurück zum Zitat Pereira WS, Freire RS (2006) Azo dye degradation by recycled waste zero-valent iron powder. J Braz Chem Soc 17(5):832–838CrossRef Pereira WS, Freire RS (2006) Azo dye degradation by recycled waste zero-valent iron powder. J Braz Chem Soc 17(5):832–838CrossRef
115.
Zurück zum Zitat Manu B, Mahamood S, Vittal H, Shrihari S (2011) A novel catalytic route to degrade paracetamol by Fenton process. Int J Res Chem Environ 1(1):157–164 Manu B, Mahamood S, Vittal H, Shrihari S (2011) A novel catalytic route to degrade paracetamol by Fenton process. Int J Res Chem Environ 1(1):157–164
116.
Zurück zum Zitat Shahidi D, Roy R, Azzouz A (2015) Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts. Appl Catal Environ 174:277–292CrossRef Shahidi D, Roy R, Azzouz A (2015) Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts. Appl Catal Environ 174:277–292CrossRef
117.
Zurück zum Zitat Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal Environ 65:261–268CrossRef Zazo JA, Casas JA, Mohedano AF, Rodriguez JJ (2006) Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl Catal Environ 65:261–268CrossRef
118.
Zurück zum Zitat Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A, Rodriguez JJ (2009) Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface. Appl Catal Environ 86:69–77CrossRef Rey A, Faraldos M, Casas JA, Zazo JA, Bahamonde A, Rodriguez JJ (2009) Catalytic wet peroxide oxidation of phenol over Fe/AC catalysts: influence of iron precursor and activated carbon surface. Appl Catal Environ 86:69–77CrossRef
119.
Zurück zum Zitat Bautista P, Mohedano AF, Menendez N, Casas JA, Rodriguez JJ (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catal Today 151:148–152CrossRef Bautista P, Mohedano AF, Menendez N, Casas JA, Rodriguez JJ (2010) Catalytic wet peroxide oxidation of cosmetic wastewaters with Fe-bearing catalysts. Catal Today 151:148–152CrossRef
121.
Zurück zum Zitat Krzemińska D, Neczaj E, Borowski G (2015) Advanced oxidation processes for food industrial wastewater decontamination. Rev Article J Ecol Eng 16(2):61–71CrossRef Krzemińska D, Neczaj E, Borowski G (2015) Advanced oxidation processes for food industrial wastewater decontamination. Rev Article J Ecol Eng 16(2):61–71CrossRef
122.
Zurück zum Zitat Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal Environ 47:219–256CrossRef Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal Environ 47:219–256CrossRef
123.
Zurück zum Zitat Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3–4):501–551CrossRef Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8(3–4):501–551CrossRef
124.
Zurück zum Zitat Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C Photochem Rev 7(4):127–144CrossRef Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C Photochem Rev 7(4):127–144CrossRef
125.
Zurück zum Zitat Weiss J (1935) Investigations on the radical HO2 in solution. Trans Faraday Soc 31:668–681CrossRef Weiss J (1935) Investigations on the radical HO2 in solution. Trans Faraday Soc 31:668–681CrossRef
126.
Zurück zum Zitat Masschelein WJ (1992) Unit processes in drinking water treatment. Marcel Dekker, New York Masschelein WJ (1992) Unit processes in drinking water treatment. Marcel Dekker, New York
127.
Zurück zum Zitat Munter R (2001) Advanced oxidation processes – current status and prospects. Proc Est Acad Sci Chem 50(2):59–80 Munter R (2001) Advanced oxidation processes – current status and prospects. Proc Est Acad Sci Chem 50(2):59–80
128.
Zurück zum Zitat Wang JL, LJ X (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Tech 42:251–325CrossRef Wang JL, LJ X (2012) Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Tech 42:251–325CrossRef
129.
Zurück zum Zitat Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal Environ 46:639–669CrossRef Kasprzyk-Hordern B, Ziółek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal Environ 46:639–669CrossRef
130.
Zurück zum Zitat Legube B, Leitner NKV (1999) Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today 53:61–72CrossRef Legube B, Leitner NKV (1999) Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catal Today 53:61–72CrossRef
131.
Zurück zum Zitat Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Leitner NKV, Boukari S (2013) An optimal control of a wastewater treatment reactor by catalytic ozonation. Control Eng Practice 21:105–112CrossRef Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Leitner NKV, Boukari S (2013) An optimal control of a wastewater treatment reactor by catalytic ozonation. Control Eng Practice 21:105–112CrossRef
132.
Zurück zum Zitat Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Leitner NKV, Boukari S (2015) A H∞ control for optimizing the advanced oxidation processes-case of a catalytic ozonation reactor. Control Eng Practice 44:1–9CrossRef Abouzlam M, Ouvrard R, Mehdi D, Pontlevoy F, Gombert B, Leitner NKV, Boukari S (2015) A H control for optimizing the advanced oxidation processes-case of a catalytic ozonation reactor. Control Eng Practice 44:1–9CrossRef
133.
Zurück zum Zitat Pirgalıoglu S, Ozbelge TA (2009) Comparison of non catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Appl Catal A: General 363:157–163CrossRef Pirgalıoglu S, Ozbelge TA (2009) Comparison of non catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Appl Catal A: General 363:157–163CrossRef
134.
Zurück zum Zitat Munoz MSG (2010) Catalytic ozonation of pharmaceuticals in aqueous solution, PhD thesis, Alcala University Munoz MSG (2010) Catalytic ozonation of pharmaceuticals in aqueous solution, PhD thesis, Alcala University
135.
Zurück zum Zitat Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal Environ 99:27–42CrossRef Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal Environ 99:27–42CrossRef
136.
Zurück zum Zitat Azzouz A, Kotbi A, Niquette P, Sajin T, Ursu AV, Rami A, Monette F, Hausler R (2010) Ozonation of oxalic acid catalyzed by ion-exchanged montmorillonite in moderately acidic media. React Kinet Mech Catal 99:289–302 Azzouz A, Kotbi A, Niquette P, Sajin T, Ursu AV, Rami A, Monette F, Hausler R (2010) Ozonation of oxalic acid catalyzed by ion-exchanged montmorillonite in moderately acidic media. React Kinet Mech Catal 99:289–302
137.
Zurück zum Zitat Liotta LF, Gruttadauria M, DiCarlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606CrossRef Liotta LF, Gruttadauria M, DiCarlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162:588–606CrossRef
138.
Zurück zum Zitat Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17CrossRef Xiao J, Xie Y, Cao H (2015) Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere 121:1–17CrossRef
139.
Zurück zum Zitat Pocostales P, Álvarez P, Beltrán FJ (2011) Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water. Chem Eng J 168:1289–1295CrossRef Pocostales P, Álvarez P, Beltrán FJ (2011) Catalytic ozonation promoted by alumina-based catalysts for the removal of some pharmaceutical compounds from water. Chem Eng J 168:1289–1295CrossRef
140.
Zurück zum Zitat Liu Y, Wang S, Gong W, Chen Z, Liu H, Bu Y, Zhang Y (2017) Heterogeneous catalytic ozonation of p-chloronitrobenzene (pCNB) in water with iron silicate doped hydroxylation iron as catalyst. Catal Commun 89:81–85CrossRef Liu Y, Wang S, Gong W, Chen Z, Liu H, Bu Y, Zhang Y (2017) Heterogeneous catalytic ozonation of p-chloronitrobenzene (pCNB) in water with iron silicate doped hydroxylation iron as catalyst. Catal Commun 89:81–85CrossRef
141.
Zurück zum Zitat Li B, Xu X, Zhu L, Ding W, Mahmood Q (2010) Catalytic ozonation of industrial wastewater containing chloro and nitro aromatics using modified diatomaceous porous filling. Desalination 254:90–98CrossRef Li B, Xu X, Zhu L, Ding W, Mahmood Q (2010) Catalytic ozonation of industrial wastewater containing chloro and nitro aromatics using modified diatomaceous porous filling. Desalination 254:90–98CrossRef
142.
Zurück zum Zitat Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98CrossRef Wang J, Bai Z (2017) Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater. Chem Eng J 312:79–98CrossRef
143.
Zurück zum Zitat Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219CrossRef Mehrjouei M, Müller S, Möller D (2015) A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem Eng J 263:209–219CrossRef
144.
Zurück zum Zitat Orge CA, Órfão JJM, Pereira MFR (2012) Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Appl Catal Environ 126:22–28CrossRef Orge CA, Órfão JJM, Pereira MFR (2012) Carbon xerogels and ceria–carbon xerogel materials as catalysts in the ozonation of organic pollutants. Appl Catal Environ 126:22–28CrossRef
145.
Zurück zum Zitat Chen C, Yu J, Yoza BA, Li QX, Wang G (2015) A novel “wastes-treat-wastes” technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J Environ Manage 152:58–65CrossRef Chen C, Yu J, Yoza BA, Li QX, Wang G (2015) A novel “wastes-treat-wastes” technology: role and potential of spent fluid catalytic cracking catalyst assisted ozonation of petrochemical wastewater. J Environ Manage 152:58–65CrossRef
146.
Zurück zum Zitat Gilbert E (2002) Influence of ozone on the photocatalytic oxidation of organic compounds. Ozone Sci Eng 24:75–82CrossRef Gilbert E (2002) Influence of ozone on the photocatalytic oxidation of organic compounds. Ozone Sci Eng 24:75–82CrossRef
147.
Zurück zum Zitat Rey A, Mena E, Chávez AM, Beltrán FJ, Medina F (2015) Influence of structural properties on the activity of WO3 catalysts for visible light photocatalytic ozonation. Chem Eng Sci 126:80–90CrossRef Rey A, Mena E, Chávez AM, Beltrán FJ, Medina F (2015) Influence of structural properties on the activity of WO3 catalysts for visible light photocatalytic ozonation. Chem Eng Sci 126:80–90CrossRef
148.
Zurück zum Zitat Sreethawong T, Chavadej S (2008) Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst. J Hazard Mater 155:486–493CrossRef Sreethawong T, Chavadej S (2008) Color removal of distillery wastewater by ozonation in the absence and presence of immobilized iron oxide catalyst. J Hazard Mater 155:486–493CrossRef
149.
Zurück zum Zitat Jung H, Choi H (2006) Catalytic decomposition of ozone and parachlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl Catal Environ 66:288–294CrossRef Jung H, Choi H (2006) Catalytic decomposition of ozone and parachlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl Catal Environ 66:288–294CrossRef
150.
Zurück zum Zitat Gharbani P, Mehrizad A (2014) Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J Saudi Chem Soc 18:601–605CrossRef Gharbani P, Mehrizad A (2014) Heterogeneous catalytic ozonation process for removal of 4-chloro-2-nitrophenol from aqueous solutions. J Saudi Chem Soc 18:601–605CrossRef
151.
Zurück zum Zitat Hu E, Wu X, Shang S, Tao X, Jiang S, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718CrossRef Hu E, Wu X, Shang S, Tao X, Jiang S, Gan L (2016) Catalytic ozonation of simulated textile dyeing wastewater using mesoporous carbon aerogel supported copper oxide catalyst. J Clean Prod 112:4710–4718CrossRef
152.
Zurück zum Zitat Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Oxford, pp 541–546 Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, Oxford, pp 541–546
153.
Zurück zum Zitat Shahidi D, Roy R, Azzouz A (2014) Total removal of oxalic acid via synergistic parameter interaction in montmorillonite catalyzed ozonation. J Environ Chem Eng 2:20–30CrossRef Shahidi D, Roy R, Azzouz A (2014) Total removal of oxalic acid via synergistic parameter interaction in montmorillonite catalyzed ozonation. J Environ Chem Eng 2:20–30CrossRef
154.
Zurück zum Zitat Aly AA, Hasan YNY, Al-Farraj AS (2014) Olive mill wastewater treatment using a simple zeolite-based low-cost method. J Environ Manage 145:341–348CrossRef Aly AA, Hasan YNY, Al-Farraj AS (2014) Olive mill wastewater treatment using a simple zeolite-based low-cost method. J Environ Manage 145:341–348CrossRef
155.
Zurück zum Zitat Li H, Xu B, Qi F, Sun D, Chen Z (2014) Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: efficiency, intermediates and toxicity. Appl Catal Environ 152:342–351CrossRef Li H, Xu B, Qi F, Sun D, Chen Z (2014) Degradation of bezafibrate in wastewater by catalytic ozonation with cobalt doped red mud: efficiency, intermediates and toxicity. Appl Catal Environ 152:342–351CrossRef
156.
Zurück zum Zitat Xu B, Qi F, Zhang J, Li H, Sun D, Robert D, Chen Z (2016) Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: catalyst surface properties characterization and reaction mechanism. Chem Eng J 284:942–952CrossRef Xu B, Qi F, Zhang J, Li H, Sun D, Robert D, Chen Z (2016) Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: catalyst surface properties characterization and reaction mechanism. Chem Eng J 284:942–952CrossRef
157.
Zurück zum Zitat Wen G, Pan ZH, Ma J, Liu ZQ, Zhao L, Li JJ (2012) Reuse of sewage sludge as a catalyst in ozonation – efficiency for the removal of oxalic acid and the control of bromate formation. J Hazard Mater 239–240:381–388CrossRef Wen G, Pan ZH, Ma J, Liu ZQ, Zhao L, Li JJ (2012) Reuse of sewage sludge as a catalyst in ozonation – efficiency for the removal of oxalic acid and the control of bromate formation. J Hazard Mater 239–240:381–388CrossRef
158.
Zurück zum Zitat Wu J, Ma L, Chen Y, Cheng Y, Liu Y, Zha X (2016) Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: removal and pathways. Water Res 92:140–148CrossRef Wu J, Ma L, Chen Y, Cheng Y, Liu Y, Zha X (2016) Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: removal and pathways. Water Res 92:140–148CrossRef
159.
Zurück zum Zitat Kamboj ML (2009) Studies on the degradation of industrial wastewater using heterogeneous photocatalysis master thesis. Thapar University, Patiala Kamboj ML (2009) Studies on the degradation of industrial wastewater using heterogeneous photocatalysis master thesis. Thapar University, Patiala
160.
Zurück zum Zitat Braslavsky SE, Houk KN (1988) Glossary of terms used in photochemistry. Pure Appl Chem 60:1055–1106CrossRef Braslavsky SE, Houk KN (1988) Glossary of terms used in photochemistry. Pure Appl Chem 60:1055–1106CrossRef
161.
Zurück zum Zitat Verhoven JW (1996) Glossary of terms used in photochemistry. Pure Appl Chem 68:2223–2286CrossRef Verhoven JW (1996) Glossary of terms used in photochemistry. Pure Appl Chem 68:2223–2286CrossRef
162.
Zurück zum Zitat Cesaro A, Belgiorno V (2015) Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review. Open Biotechnol J 9:1–28CrossRef Cesaro A, Belgiorno V (2015) Removal of endocrine disruptors from urban wastewater by advanced oxidation processes (AOPs): a review. Open Biotechnol J 9:1–28CrossRef
163.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRef
164.
Zurück zum Zitat Renge VC, Khedkar SV, Thanvi NJ (2012) Photocatalytic oxidation and reactors – a review. Int J Adv Eng Technol 3(4):31–35 Renge VC, Khedkar SV, Thanvi NJ (2012) Photocatalytic oxidation and reactors – a review. Int J Adv Eng Technol 3(4):31–35
166.
Zurück zum Zitat Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRef Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218CrossRef
167.
Zurück zum Zitat Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydro Energy 32:2664–2672CrossRef Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydro Energy 32:2664–2672CrossRef
168.
Zurück zum Zitat Hoffmann HR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 69:95–101 Hoffmann HR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 69:95–101
169.
Zurück zum Zitat Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW (2003) Removal of paraquat in aqueous suspension of TiO2 in an immersed UV photoreactor. Korean J Chem Eng 20(5):862–868CrossRef Lee JC, Kim MS, Kim CK, Chung CH, Cho SM, Han GY, Yoon KJ, Kim BW (2003) Removal of paraquat in aqueous suspension of TiO2 in an immersed UV photoreactor. Korean J Chem Eng 20(5):862–868CrossRef
170.
Zurück zum Zitat Mok NB (2009) Photocatalytic degradation of oily wastewater: effect of catalyst concentration load, irradiation time and temperature. Bachelor thesis, Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang Mok NB (2009) Photocatalytic degradation of oily wastewater: effect of catalyst concentration load, irradiation time and temperature. Bachelor thesis, Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang
172.
Zurück zum Zitat Khataee AR, Zarei M, Ordikhani-Seyedlar R (2011) Heterogeneous photocatalysis of a dye solution using supported TiO2 nanoparticles combined with homogeneous photoelectrochemical process: molecular degradation products. J Molec Catal A Chem 338:84–91 Khataee AR, Zarei M, Ordikhani-Seyedlar R (2011) Heterogeneous photocatalysis of a dye solution using supported TiO2 nanoparticles combined with homogeneous photoelectrochemical process: molecular degradation products. J Molec Catal A Chem 338:84–91
173.
Zurück zum Zitat Ahmed S, Rasul MG, Brown R, Hashi MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330CrossRef Ahmed S, Rasul MG, Brown R, Hashi MA (2011) Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. J Environ Manage 92:311–330CrossRef
174.
Zurück zum Zitat Bockelmann D, Weichgrebe D, Goslich R, Bahnemann D (1995) Concentrating versus non-concentrating reactors for solar water detoxication. Sol Energ Mater Sol Cell 38:441–251CrossRef Bockelmann D, Weichgrebe D, Goslich R, Bahnemann D (1995) Concentrating versus non-concentrating reactors for solar water detoxication. Sol Energ Mater Sol Cell 38:441–251CrossRef
175.
Zurück zum Zitat Banu JR, Anandan S, Kaliappan S, Yeom IY (2008) Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol Energy 82:812–819CrossRef Banu JR, Anandan S, Kaliappan S, Yeom IY (2008) Treatment of dairy wastewater using anaerobic and solar photocatalytic methods. Sol Energy 82:812–819CrossRef
176.
Zurück zum Zitat Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRef Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027CrossRef
177.
Zurück zum Zitat Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J (2016) Engineering coordination polymers for photocatalysis. Nano Energy 22:149–168CrossRef Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J (2016) Engineering coordination polymers for photocatalysis. Nano Energy 22:149–168CrossRef
178.
Zurück zum Zitat Kumar P, Kumar S, Bhardwaj NK, Kumar S (2011) Titanium dioxide photocatalysis for the pulp and paper industry wastewater treatment. Ind J Sci Technol 4(3):327–332 Kumar P, Kumar S, Bhardwaj NK, Kumar S (2011) Titanium dioxide photocatalysis for the pulp and paper industry wastewater treatment. Ind J Sci Technol 4(3):327–332
179.
Zurück zum Zitat Chen Q, Ji F, Guo Q, Fan J, Xu X (2014) Combination of heterogeneous Fenton-like reaction and photocatalysis using Co-TiO2 nanocatalyst for activation of KHSO5 with visible light irradiation at ambient conditions. J Environ Sci 26:2440–2450CrossRef Chen Q, Ji F, Guo Q, Fan J, Xu X (2014) Combination of heterogeneous Fenton-like reaction and photocatalysis using Co-TiO2 nanocatalyst for activation of KHSO5 with visible light irradiation at ambient conditions. J Environ Sci 26:2440–2450CrossRef
180.
Zurück zum Zitat García-Muñoz P, Pliego G, Zazo JA, Bahamonde A, Casas JA (2016) Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng 4:542–548CrossRef García-Muñoz P, Pliego G, Zazo JA, Bahamonde A, Casas JA (2016) Ilmenite (FeTiO3) as low cost catalyst for advanced oxidation processes. J Environ Chem Eng 4:542–548CrossRef
182.
Zurück zum Zitat Booshehri AY, Polo-Lopez MI, Castro-Alférez M, He P, Xu R, Rong W, Malato S, Fernández-Ibá˜nez P (2017) Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluents. Catal Today 281:124–134CrossRef Booshehri AY, Polo-Lopez MI, Castro-Alférez M, He P, Xu R, Rong W, Malato S, Fernández-Ibá˜nez P (2017) Assessment of solar photocatalysis using Ag/BiVO4 at pilot solar compound parabolic collector for inactivation of pathogens in well water and secondary effluents. Catal Today 281:124–134CrossRef
183.
Zurück zum Zitat Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal Environ 107:110–118CrossRef Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal Environ 107:110–118CrossRef
184.
Zurück zum Zitat Lam SM, Sin JC, Mohamed AR (2016) A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater Sci Semicond Process 47:62–84CrossRef Lam SM, Sin JC, Mohamed AR (2016) A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Mater Sci Semicond Process 47:62–84CrossRef
185.
Zurück zum Zitat Shan AY, Ghaz TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A General 389:1–8CrossRef Shan AY, Ghaz TIM, Rashid SA (2010) Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl Catal A General 389:1–8CrossRef
186.
Zurück zum Zitat Rajeshwar K, Chenthamarakshan CR, Goeringer S, Djukic M (2001) Titania based heterogeneous photocatalysis: materials mechanistic issues and implications for environmental remediation. Pure Appl Chem 73(12):1849–1860CrossRef Rajeshwar K, Chenthamarakshan CR, Goeringer S, Djukic M (2001) Titania based heterogeneous photocatalysis: materials mechanistic issues and implications for environmental remediation. Pure Appl Chem 73(12):1849–1860CrossRef
187.
Zurück zum Zitat Murphy S (2012) Photocatalytic degradation of pharmaceuticals in aqueous solutions and development of new dye sensitised photocatalytic materials, PhD thesis, Dublin City University Murphy S (2012) Photocatalytic degradation of pharmaceuticals in aqueous solutions and development of new dye sensitised photocatalytic materials, PhD thesis, Dublin City University
188.
Zurück zum Zitat Osarumwense JO, Amenaghawn NA, Aisien FA (2015) Heterogeneous photocatalytic degradation of phenol in aqueous suspension of periwinkle shell ash catalyst in the presence of UV from sunlight. J Eng Sci Technol 10(12):1525–1539 Osarumwense JO, Amenaghawn NA, Aisien FA (2015) Heterogeneous photocatalytic degradation of phenol in aqueous suspension of periwinkle shell ash catalyst in the presence of UV from sunlight. J Eng Sci Technol 10(12):1525–1539
189.
Zurück zum Zitat Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215(1–4):3–29CrossRef Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215(1–4):3–29CrossRef
190.
Zurück zum Zitat Jin YX, Li GH, Zhang Y, Zhang YX, Zhang LD (2001) Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4. J Phys Condens Matter 13:L913–L918CrossRef Jin YX, Li GH, Zhang Y, Zhang YX, Zhang LD (2001) Photoluminescence of anatase TiO2 thin films achieved by the addition of ZnFe2O4. J Phys Condens Matter 13:L913–L918CrossRef
191.
Zurück zum Zitat Belgiorno V, Rizzo L, Fatta D, Rocca CD, Lofrano G, Nikolaouc A, Naddeo V, Meric S (2007) Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215:166–176CrossRef Belgiorno V, Rizzo L, Fatta D, Rocca CD, Lofrano G, Nikolaouc A, Naddeo V, Meric S (2007) Review on endocrine disrupting-emerging compounds in urban wastewater: occurrence and removal by photocatalysis and ultrasonic irradiation for wastewater reuse. Desalination 215:166–176CrossRef
192.
Zurück zum Zitat Hassan M, Zhao Y, Xie B (2016) Employing TiO2 photocatalysis to deal with landfill leachate: current status and development. Chem Eng J 285:264–275CrossRef Hassan M, Zhao Y, Xie B (2016) Employing TiO2 photocatalysis to deal with landfill leachate: current status and development. Chem Eng J 285:264–275CrossRef
193.
Zurück zum Zitat Singh S, Singh PK, Mahalingam H (2015) An effective and low-cost TiO2/polystyrene floating photocatalyst for environmental remediation. Int J Environ Res 9(2):535–544 Singh S, Singh PK, Mahalingam H (2015) An effective and low-cost TiO2/polystyrene floating photocatalyst for environmental remediation. Int J Environ Res 9(2):535–544
194.
Zurück zum Zitat Zimmermann FJ (1954) Waste disposal. US Patent No. 2 665 249, US Patent Office 6(10):630–631 Zimmermann FJ (1954) Waste disposal. US Patent No. 2 665 249, US Patent Office 6(10):630–631
195.
Zurück zum Zitat Zimmermann FJ, Diddams DG (1960) The Zimmermann process and its application in the pulp and paper industry. TAPPI 43:710–715 Zimmermann FJ, Diddams DG (1960) The Zimmermann process and its application in the pulp and paper industry. TAPPI 43:710–715
197.
Zurück zum Zitat Zou L, Zhu B (2006) Literature review report for smart water project “improving recycled water aesthetic quality by removing colour and trace organics.” Oxidation processes for degradation of organic pollutants in water. Institute of Sustainability and Innovation Victoria University Zou L, Zhu B (2006) Literature review report for smart water project “improving recycled water aesthetic quality by removing colour and trace organics.” Oxidation processes for degradation of organic pollutants in water. Institute of Sustainability and Innovation Victoria University
198.
Zurück zum Zitat Roy S, Vashishtha M, Saroha AK (2010) Catalytic wet air oxidation of oxalic acid using platinum catalysts in bubble column reactor: a review. J Eng Sci Technol Rev 3(1):95–107CrossRef Roy S, Vashishtha M, Saroha AK (2010) Catalytic wet air oxidation of oxalic acid using platinum catalysts in bubble column reactor: a review. J Eng Sci Technol Rev 3(1):95–107CrossRef
201.
Zurück zum Zitat Gaikwad RW, Malik I, Kulkarni V, Mhaske S, Badadhe S (2016) Review on catalytic wet air oxidation. Int J Environ Natural Sci 9:1–8 Gaikwad RW, Malik I, Kulkarni V, Mhaske S, Badadhe S (2016) Review on catalytic wet air oxidation. Int J Environ Natural Sci 9:1–8
202.
Zurück zum Zitat Debellefontaine H, Foussard JN (2000) Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag 20:15–25CrossRef Debellefontaine H, Foussard JN (2000) Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag 20:15–25CrossRef
203.
Zurück zum Zitat Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73:143–160CrossRef Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB (1999) Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J 73:143–160CrossRef
204.
Zurück zum Zitat Ovejero G, Sotelo JL, Garcia J, Rodrıguez A (2005) Catalytic removal of phenol from aqueous solutions in a trickle bed reactor. J Chem Technol Biotechnol 80:406–412CrossRef Ovejero G, Sotelo JL, Garcia J, Rodrıguez A (2005) Catalytic removal of phenol from aqueous solutions in a trickle bed reactor. J Chem Technol Biotechnol 80:406–412CrossRef
205.
Zurück zum Zitat Rodr’ıguez A, Ovejero G, Romero MD, Diaz C, Barreiro M, Garcia J (2008) Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers. J Super Fluids 46:163–172CrossRef Rodr’ıguez A, Ovejero G, Romero MD, Diaz C, Barreiro M, Garcia J (2008) Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers. J Super Fluids 46:163–172CrossRef
206.
Zurück zum Zitat Hong TY (2013) Catalytic wet air oxidation of wastewater containing acetic acid. BSc thesis, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang Hong TY (2013) Catalytic wet air oxidation of wastewater containing acetic acid. BSc thesis, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang
207.
Zurück zum Zitat Moses DV, Smith EA (1954) Wet air oxidation of aqueous wastes, US Patent 2,690,425 Moses DV, Smith EA (1954) Wet air oxidation of aqueous wastes, US Patent 2,690,425
208.
Zurück zum Zitat Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184CrossRef Levec J, Pintar A (2007) Catalytic wet-air oxidation processes: a review. Catal Today 124:172–184CrossRef
209.
Zurück zum Zitat Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53:81–91CrossRef Luck F (1999) Wet air oxidation: past, present and future. Catal Today 53:81–91CrossRef
210.
Zurück zum Zitat Hosseini AM (2013) Intensification of wet oxidation of industrial process wastewater. Department of Chemical and Environmental Process Engineering of BME and Centre of Energy Research of Hungarian Academy of Sciences Hosseini AM (2013) Intensification of wet oxidation of industrial process wastewater. Department of Chemical and Environmental Process Engineering of BME and Centre of Energy Research of Hungarian Academy of Sciences
211.
Zurück zum Zitat Trunfio G Catalyst development for the catalytic wet air oxidation (CWAO) of phenol. Thesis for the degree of Doctor of Philosophy in “Chemical Technologies and Innovative Processes,” University of Messina, Area 03-Scienze Chimiche (CHIM 04), CYCLE XXI (2006–2008) Trunfio G Catalyst development for the catalytic wet air oxidation (CWAO) of phenol. Thesis for the degree of Doctor of Philosophy in “Chemical Technologies and Innovative Processes,” University of Messina, Area 03-Scienze Chimiche (CHIM 04), CYCLE XXI (2006–2008)
212.
Zurück zum Zitat Oliviero L, Barbier J, Duprez D (2003) Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Appl Catal Environ 40:163–184CrossRef Oliviero L, Barbier J, Duprez D (2003) Wet air oxidation of nitrogen-containing organic compounds and ammonia in aqueous media. Appl Catal Environ 40:163–184CrossRef
213.
Zurück zum Zitat Erjavec B, Kaplana R, Djinovic P, Pintar A (2013) Catalytic wet air oxidation of bisphenol a model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl Catal Environ 132-133:342–352CrossRef Erjavec B, Kaplana R, Djinovic P, Pintar A (2013) Catalytic wet air oxidation of bisphenol a model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl Catal Environ 132-133:342–352CrossRef
214.
Zurück zum Zitat Modi RR, Vyas DS, Patel SM (2016) Catalytic wet air oxidation of dye industry wastewater using metallic catalyst. IJARIIE 2(3):461–469 Modi RR, Vyas DS, Patel SM (2016) Catalytic wet air oxidation of dye industry wastewater using metallic catalyst. IJARIIE 2(3):461–469
215.
Zurück zum Zitat Jani HR (2008) Catalytic wet air oxidation of pulp and paper mills effluent. PhD thesis, School of Applied Sciences, Science, Engineering, and Technology Portfolio, RMIT University Jani HR (2008) Catalytic wet air oxidation of pulp and paper mills effluent. PhD thesis, School of Applied Sciences, Science, Engineering, and Technology Portfolio, RMIT University
216.
Zurück zum Zitat Gomes HT, Figueiredo JL, Faria JL (2007) Catalytic wet air oxidation of olive mill wastewater. Catal Today 124:254–259CrossRef Gomes HT, Figueiredo JL, Faria JL (2007) Catalytic wet air oxidation of olive mill wastewater. Catal Today 124:254–259CrossRef
217.
Zurück zum Zitat Imamura S (1999) Catalytic and noncatalytic wet oxidation. Ind Eng Chem Res 38:1743–1753CrossRef Imamura S (1999) Catalytic and noncatalytic wet oxidation. Ind Eng Chem Res 38:1743–1753CrossRef
218.
Zurück zum Zitat Matatov-Meytal Y, Sheintuch M (1998) Catalytic abatement of water pollutants. Ind Eng Chem Res 37:309–326CrossRef Matatov-Meytal Y, Sheintuch M (1998) Catalytic abatement of water pollutants. Ind Eng Chem Res 37:309–326CrossRef
219.
Zurück zum Zitat Eftaxias A (2002) Catalytic wet air oxidation of phenol in a trickle bed reactor: kinetics and reactor modelling, PhD thesis, Escola T’ecnica Superior de Enginyeria Qu’ımica, Departament d’Enginyeria Qu’ımica, Universitat Rovira i Virgili, Tarragona Eftaxias A (2002) Catalytic wet air oxidation of phenol in a trickle bed reactor: kinetics and reactor modelling, PhD thesis, Escola T’ecnica Superior de Enginyeria Qu’ımica, Departament d’Enginyeria Qu’ımica, Universitat Rovira i Virgili, Tarragona
220.
Zurück zum Zitat Katsoni A, Gomes HT, Pastrana-Martínez LM, Faria JL, Figueiredoc JL, Mantzavinos D, Silva AMT (2011) Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chem Eng J 172:634–640CrossRef Katsoni A, Gomes HT, Pastrana-Martínez LM, Faria JL, Figueiredoc JL, Mantzavinos D, Silva AMT (2011) Degradation of trinitrophenol by sequential catalytic wet air oxidation and solar TiO2 photocatalysis. Chem Eng J 172:634–640CrossRef
221.
Zurück zum Zitat Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics Catal 33:3–50CrossRef Stüber F, Font J, Fortuny A, Bengoa C, Eftaxias A, Fabregat A (2005) Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. Topics Catal 33:3–50CrossRef
222.
Zurück zum Zitat Morales-Torres S, Silva AMT, Pérez-Cadenas AF, Faria JL, Maldonado-Hódar FJ, Figueiredo JL, Carrasco-Marín F (2010) Wet air oxidation of trinitrophenol with activated carbon catalysts: effect of textural properties on the mechanism of degradation. Appl Catal Environ 100:310–317CrossRef Morales-Torres S, Silva AMT, Pérez-Cadenas AF, Faria JL, Maldonado-Hódar FJ, Figueiredo JL, Carrasco-Marín F (2010) Wet air oxidation of trinitrophenol with activated carbon catalysts: effect of textural properties on the mechanism of degradation. Appl Catal Environ 100:310–317CrossRef
223.
Zurück zum Zitat Gomes HT, Machado BF, Ribeiro A, Moreira I, Rosário M, Silva AMT, Figueiredo JL, Faria JL (2008) Catalytic properties of carbon materials for wet oxidation of aniline. J Hazard Mater 159:420–426CrossRef Gomes HT, Machado BF, Ribeiro A, Moreira I, Rosário M, Silva AMT, Figueiredo JL, Faria JL (2008) Catalytic properties of carbon materials for wet oxidation of aniline. J Hazard Mater 159:420–426CrossRef
224.
Zurück zum Zitat Apolinário AC, Silva AMT, Machado BF, Gomes HT, Araújo PP, Figueiredo JL, Faria JL (2008) Wet air oxidation of nitro-aromatic compounds: reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl Catal Environ 84:75–86CrossRef Apolinário AC, Silva AMT, Machado BF, Gomes HT, Araújo PP, Figueiredo JL, Faria JL (2008) Wet air oxidation of nitro-aromatic compounds: reactivity on single- and multi-component systems and surface chemistry studies with a carbon xerogel. Appl Catal Environ 84:75–86CrossRef
225.
Zurück zum Zitat Yang S, Zhu W, Li X, Wang J, Zhou Y (2007) Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal Commun 8:2059–2063CrossRef Yang S, Zhu W, Li X, Wang J, Zhou Y (2007) Multi-walled carbon nanotubes (MWNTs) as an efficient catalyst for catalytic wet air oxidation of phenol. Catal Commun 8:2059–2063CrossRef
226.
Zurück zum Zitat Yang S, Li X, Zhu W, Wang J, Descorme C (2008) Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 46:445–452CrossRef Yang S, Li X, Zhu W, Wang J, Descorme C (2008) Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon 46:445–452CrossRef
227.
Zurück zum Zitat Rocha RP, Sousa JP, Silva AMT, Pereira MFR, Figueiredo JL (2011) Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Appl Catal Environ 104:330–336CrossRef Rocha RP, Sousa JP, Silva AMT, Pereira MFR, Figueiredo JL (2011) Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: the role of the basic nature induced by the surface chemistry. Appl Catal Environ 104:330–336CrossRef
228.
Zurück zum Zitat Sousa JPS, Silva AMT, Pereira MFR, Figueiredo JL (2010) Wet air oxidation of aniline using carbon foams and fibers enriched with nitrogen. Sep Sci Technol 45:1546–1554CrossRef Sousa JPS, Silva AMT, Pereira MFR, Figueiredo JL (2010) Wet air oxidation of aniline using carbon foams and fibers enriched with nitrogen. Sep Sci Technol 45:1546–1554CrossRef
229.
Zurück zum Zitat Yang S, Cui Y, Sun Y, Yang H (2014) Graphene oxide as an effective catalyst for wet air oxidation of phenol. J Hazard Matter 280:55–62CrossRef Yang S, Cui Y, Sun Y, Yang H (2014) Graphene oxide as an effective catalyst for wet air oxidation of phenol. J Hazard Matter 280:55–62CrossRef
230.
Zurück zum Zitat Zhang Y, Peng F, Zhou Y (2016) Structure, characterization, and dynamic performance of a wet air oxidation catalyst Cu-Fe-La/γ-Al2O3. Chin J Chem Eng 24:1171–1177CrossRef Zhang Y, Peng F, Zhou Y (2016) Structure, characterization, and dynamic performance of a wet air oxidation catalyst Cu-Fe-La/γ-Al2O3. Chin J Chem Eng 24:1171–1177CrossRef
231.
Zurück zum Zitat Nakatsuji T, Kunishige M, Li J, Hashimoto M, Matsuzono Y (2013) Effect of CeO2 addition into Pd/Zr–Pr mixed oxide on three-way catalysis and thermal durability. Catal Comm 35:88–94CrossRef Nakatsuji T, Kunishige M, Li J, Hashimoto M, Matsuzono Y (2013) Effect of CeO2 addition into Pd/Zr–Pr mixed oxide on three-way catalysis and thermal durability. Catal Comm 35:88–94CrossRef
232.
Zurück zum Zitat Bernardi M, ML D, Dodouche I, Descorme C, Deleris S, Blanchet E, Besson M (2012) Selective removal of the ammonium-nitrogen in ammonium acetate aqueous solutions by catalytic wet air oxidation over supported Pt catalysts. Appl Catal Environ 128:64–71CrossRef Bernardi M, ML D, Dodouche I, Descorme C, Deleris S, Blanchet E, Besson M (2012) Selective removal of the ammonium-nitrogen in ammonium acetate aqueous solutions by catalytic wet air oxidation over supported Pt catalysts. Appl Catal Environ 128:64–71CrossRef
233.
Zurück zum Zitat Wang C, Wang GR, Wang JF (2014) A bi-component Cu catalyst for the direct synthesis of methylchlorosilane from silicon and methyl chloride. Chin J Chem Eng 22:299–304CrossRef Wang C, Wang GR, Wang JF (2014) A bi-component Cu catalyst for the direct synthesis of methylchlorosilane from silicon and methyl chloride. Chin J Chem Eng 22:299–304CrossRef
234.
Zurück zum Zitat Massa P, Ivorra F, Haure P, Fenoglio R (2011) Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. J Hazard Mater 190:1068–1073CrossRef Massa P, Ivorra F, Haure P, Fenoglio R (2011) Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems. J Hazard Mater 190:1068–1073CrossRef
235.
Zurück zum Zitat Fazlollahi F, Sarkari M, Gharebaghi H, Atashi H, Zarei MM, Mirzaei AA, Hecker WC (2013) Preparation of Fe–Mn/K/Al2O3 Fischer–Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide. Chin J Chem Eng 21:507–519CrossRef Fazlollahi F, Sarkari M, Gharebaghi H, Atashi H, Zarei MM, Mirzaei AA, Hecker WC (2013) Preparation of Fe–Mn/K/Al2O3 Fischer–Tropsch catalyst and its catalytic kinetics for the hydrogenation of carbon monoxide. Chin J Chem Eng 21:507–519CrossRef
236.
Zurück zum Zitat Wenbing M, Hongpeng L, Xuemei M (2013) Study on supercritical water oxidation of oily wastewater with ethanol. Res J Appl Sci Eng Technol 6(6):1007–1011 Wenbing M, Hongpeng L, Xuemei M (2013) Study on supercritical water oxidation of oily wastewater with ethanol. Res J Appl Sci Eng Technol 6(6):1007–1011
237.
Zurück zum Zitat Bambang V, Jae-Duck K (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522CrossRef Bambang V, Jae-Duck K (2007) Supercritical water oxidation for the destruction of toxic organic wastewaters: a review. J Environ Sci 19:513–522CrossRef
238.
Zurück zum Zitat Fourcault A, Garcia-Jarana B, Sanchez-Oneto J, Mariasa F, Portela JR (2009) Supercritical water oxidation of phenol with air. Experimental results and modeling. Chem Eng J 152:227–233CrossRef Fourcault A, Garcia-Jarana B, Sanchez-Oneto J, Mariasa F, Portela JR (2009) Supercritical water oxidation of phenol with air. Experimental results and modeling. Chem Eng J 152:227–233CrossRef
239.
Zurück zum Zitat Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485CrossRef Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485CrossRef
240.
Zurück zum Zitat Xu D, Wang S, Tang X, Gong Y, Guo Y, Wang Y, Zhang J (2012) Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge. Chem Eng Res Des 90:288–297CrossRef Xu D, Wang S, Tang X, Gong Y, Guo Y, Wang Y, Zhang J (2012) Design of the first pilot scale plant of China for supercritical water oxidation of sewage sludge. Chem Eng Res Des 90:288–297CrossRef
241.
242.
Zurück zum Zitat Marrone PA (2013) Supercritical water oxidation-current status of full-scale commercial activity for waste destruction. J Super Fluids 79:283–288CrossRef Marrone PA (2013) Supercritical water oxidation-current status of full-scale commercial activity for waste destruction. J Super Fluids 79:283–288CrossRef
243.
Zurück zum Zitat Li X, Li G (2015) A review: pharmaceutical wastewater treatment technology and research in China. Asia-Pacific energy equipment engineering research conference (AP3ER 2015), pp 345–348 Li X, Li G (2015) A review: pharmaceutical wastewater treatment technology and research in China. Asia-Pacific energy equipment engineering research conference (AP3ER 2015), pp 345–348
244.
Zurück zum Zitat Youngprasert B, Poochinda K, Ngamprasertsith S (2010) Treatment of acetonitrile by catalytic supercritical water oxidation in compact-sized reactor. J Water Resource Protect 2:222–226CrossRef Youngprasert B, Poochinda K, Ngamprasertsith S (2010) Treatment of acetonitrile by catalytic supercritical water oxidation in compact-sized reactor. J Water Resource Protect 2:222–226CrossRef
245.
Zurück zum Zitat Dong X, Gan Z, Lu X, Jin W, Yu Y, Zhang M (2015) Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chem Eng J 277:30–39CrossRef Dong X, Gan Z, Lu X, Jin W, Yu Y, Zhang M (2015) Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chem Eng J 277:30–39CrossRef
246.
Zurück zum Zitat Yu L, Han M, He F (2017) A review of treating oily wastewater. Arabian J Chem 10:S1913–S1922CrossRef Yu L, Han M, He F (2017) A review of treating oily wastewater. Arabian J Chem 10:S1913–S1922CrossRef
247.
Zurück zum Zitat Medoll M (1982) Processing methods for the oxidation of organics in supercritical water. US Patent 4,338,199 Medoll M (1982) Processing methods for the oxidation of organics in supercritical water. US Patent 4,338,199
248.
Zurück zum Zitat Abelleira J, Sánchez-Oneto J, Portela JR, Martínez de la Ossa EJ (2013) Kinetics of supercritical water oxidation of isopropanol as an auxiliary fuel and co-fuel. Fuel 111:574–583CrossRef Abelleira J, Sánchez-Oneto J, Portela JR, Martínez de la Ossa EJ (2013) Kinetics of supercritical water oxidation of isopropanol as an auxiliary fuel and co-fuel. Fuel 111:574–583CrossRef
249.
Zurück zum Zitat Ding ZY, Frisch MA, Li L, Gloyna EF (1996) Catalytic oxidation in supercritical water. Ind Eng Chem Res 35:3257–3279CrossRef Ding ZY, Frisch MA, Li L, Gloyna EF (1996) Catalytic oxidation in supercritical water. Ind Eng Chem Res 35:3257–3279CrossRef
250.
Zurück zum Zitat Tomita K, Oshima Y (2004) Stability of manganese oxide in catalytic supercritical water oxidation of phenol. Ind Eng Chem Res 43:7740–7743CrossRef Tomita K, Oshima Y (2004) Stability of manganese oxide in catalytic supercritical water oxidation of phenol. Ind Eng Chem Res 43:7740–7743CrossRef
251.
Zurück zum Zitat Silva CLD, Garlapalli RK, Trembly JP (2017) Removal of phenol from oil/gas produced water using supercritical water treatment with TiO2 supported MnO2 catalyst. J Environ Chem Eng 5:488–493CrossRef Silva CLD, Garlapalli RK, Trembly JP (2017) Removal of phenol from oil/gas produced water using supercritical water treatment with TiO2 supported MnO2 catalyst. J Environ Chem Eng 5:488–493CrossRef
252.
Zurück zum Zitat Arslan-Alaton I, Ferry JL (2002) H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects. Appl Catal B-Environ 38:283–293CrossRef Arslan-Alaton I, Ferry JL (2002) H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water: kinetic and mechanistic aspects. Appl Catal B-Environ 38:283–293CrossRef
253.
Zurück zum Zitat Nunoura T, Lee G, Matsumura Y, Yamamoto K (2003) Reaction engineering model for supercritical water oxidation of phenol catalyzed by activated carbon. Ind Eng Chem Res 42:3522–3531CrossRef Nunoura T, Lee G, Matsumura Y, Yamamoto K (2003) Reaction engineering model for supercritical water oxidation of phenol catalyzed by activated carbon. Ind Eng Chem Res 42:3522–3531CrossRef
254.
Zurück zum Zitat Krajnc M, Levec J (1997) Oxidation of phenol over a transition-metal oxide catalyst in supercritical water. Ind Eng Chem Res 36:3439–3445CrossRef Krajnc M, Levec J (1997) Oxidation of phenol over a transition-metal oxide catalyst in supercritical water. Ind Eng Chem Res 36:3439–3445CrossRef
255.
Zurück zum Zitat Ding ZY, Aki SN, Abraham MA (1995) Catalytic supercritical water oxidation: phenol conversion and product selectivity. Environ Sci Technol 29:2748–2753CrossRef Ding ZY, Aki SN, Abraham MA (1995) Catalytic supercritical water oxidation: phenol conversion and product selectivity. Environ Sci Technol 29:2748–2753CrossRef
256.
Zurück zum Zitat Zhang X, Savage PE (1998) Fast catalytic oxidation of phenol in supercritical water. Catal Today 40:333–342CrossRef Zhang X, Savage PE (1998) Fast catalytic oxidation of phenol in supercritical water. Catal Today 40:333–342CrossRef
257.
Zurück zum Zitat Yu J, Savage PE (2000) Kinetics of catalytic supercritical water oxidation of phenol over TiO2. Environ Sci Technol 34:3191–3198CrossRef Yu J, Savage PE (2000) Kinetics of catalytic supercritical water oxidation of phenol over TiO2. Environ Sci Technol 34:3191–3198CrossRef
258.
Zurück zum Zitat Yu J, Savage PE (1999) Catalytic oxidation of phenol over MnO2 in supercritical water. Ind Eng Chem Res 38:3793–3801CrossRef Yu J, Savage PE (1999) Catalytic oxidation of phenol over MnO2 in supercritical water. Ind Eng Chem Res 38:3793–3801CrossRef
259.
Zurück zum Zitat Angeles-Hernández MJ, Leeke GA, Santos RC (2008) Catalytic supercritical water oxidation for the destruction of quinoline over MnO2/CuO mixed catalyst. Ind Eng Chem Res 48:1208–1214CrossRef Angeles-Hernández MJ, Leeke GA, Santos RC (2008) Catalytic supercritical water oxidation for the destruction of quinoline over MnO2/CuO mixed catalyst. Ind Eng Chem Res 48:1208–1214CrossRef
260.
Zurück zum Zitat Civan F, Özaltun DH, Kıpcak E, Akgün M (2015) The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation. J Super Fluids 100:7–14CrossRef Civan F, Özaltun DH, Kıpcak E, Akgün M (2015) The treatment of landfill leachate over Ni/Al2O3 by supercritical water oxidation. J Super Fluids 100:7–14CrossRef
261.
Zurück zum Zitat Aki SNVK, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog Sustain Energy 17(4):246–255 Aki SNVK, Abraham MA (1998) An economic evaluation of catalytic supercritical water oxidation: comparison with alternative waste treatment technologies. Environ Prog Sustain Energy 17(4):246–255
262.
Zurück zum Zitat Lee G, Nunoura T, Matsumura Y, Yamamoto K (2002) Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phe-nol in supercritical water and under supercritical water oxidation conditions. J Super Fluids 24:239–250CrossRef Lee G, Nunoura T, Matsumura Y, Yamamoto K (2002) Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phe-nol in supercritical water and under supercritical water oxidation conditions. J Super Fluids 24:239–250CrossRef
263.
Zurück zum Zitat Qi XH, Zhuan YY, Yuan YC, WX G (2002) Decomposition of aniline in supercritical water. J Hazard Mater B 90:51–62CrossRef Qi XH, Zhuan YY, Yuan YC, WX G (2002) Decomposition of aniline in supercritical water. J Hazard Mater B 90:51–62CrossRef
264.
Zurück zum Zitat Kazemi N, Tavakoli O, Seif S, Nahangi M (2015) High-strength distillery wastewater treatment using catalytic sub- and supercritical water. J Super Fluids 97:74–80CrossRef Kazemi N, Tavakoli O, Seif S, Nahangi M (2015) High-strength distillery wastewater treatment using catalytic sub- and supercritical water. J Super Fluids 97:74–80CrossRef
265.
Zurück zum Zitat Chen JH, Ma CY, Xi DL, Li Q (2011) Study on catalytic supercritical water oxidation process for treating the perfume waste water. Environ Eng 29:36–39 Chen JH, Ma CY, Xi DL, Li Q (2011) Study on catalytic supercritical water oxidation process for treating the perfume waste water. Environ Eng 29:36–39
266.
Zurück zum Zitat Lin KS, Wang HP (2000) Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters. Environ Sci Technol 34:4849–4854CrossRef Lin KS, Wang HP (2000) Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters. Environ Sci Technol 34:4849–4854CrossRef
Metadaten
Titel
Cost-Effective Catalytic Materials for AOP Treatment Units
verfasst von
Shahryar Jafarinejad
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/698_2017_77