Skip to main content

2017 | OriginalPaper | Buchkapitel

Counterfactuals in Nelson Logic

verfasst von : Andreas Kapsner, Hitoshi Omori

Erschienen in: Logic, Rationality, and Interaction

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We motivate and develop an extension of Nelson’s constructive logic N3 that adds a counterfactual conditional to the existing setup. After developing the semantics, we will outline how our account will be able to give a nice analysis of natural language counterfactuals. In particular, the account does justice to the intuitions and arguments that have lead Alan Hájek to claim that most conditionals are false, but assertable, without actually forcing us to endorse that rather uncomfortable claim.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For more technical discussions related to Nelson’s logics, see [4, 7].
 
2
In other words, it is like the Michael Dunn’s semantics (cf. [1]) for the so-called Belnap-Dunn logic or FDE.
 
3
Note, however, that for the notation we follow Krister Segerberg’s notation in [13]. More specifically, we use \(\sqsupset \) and for would- and might-conditionals respectively. This has an intuitive appeal since these symbols are half-box and diamond which reflect the truth conditions for those conditionals.
 
4
Note that we have \(w\Vdash _{0} A\) iff \(w\not \Vdash _{1} A\) here since we are reviewing the conditional logic based on classical logic.
 
5
See [6, p.15] for the original discussion of these requirements and their motivation. If, instead of the last requirement, we add
  • If \(x\in f_A(w)\) and \(y\in f_A(w)\) then \(x=y\),
we get the system preferred by Robert Stalnaker.
 
6
One reason why this alternative might seem tempting is that it leaves our original condition free to serve as the falsification clause for an added might-conditional. Might-conditionals, however, are yet another topic we don’t have the space to cover in this piece.
 
7
This also works for the case with Wansing’s connexive logic C, a variant of N4.
 
8
We emphasize again that \((A\wedge {-}A){\rightarrow }B\) is invalid in N4.
 
9
Basically the same idea is applied by Priest in [11] in which he discusses the cancellation account of negation.
 
10
One of the reasons why Lewis was not too concerned about the “right" choice between the two clauses for the truth of conditionals is this: He realized that, in the classical case he was considering, he could define either one of the two conditionals in terms of the other ([6, p. 26]). Here is how to define the old condition in terms of the new one: \(A\sqsupset _{old}B =_{def}\) \((A\sqsupset _{new} A)\supset (A\sqsupset _{new} B)\). Now, if this was possible in our setting as well, of course, then we would be faced with disaster again. Luckily, the equivalence does not hold in our system if we replace the material conditional with the constructive Nelson conditional. The same is true of \({-}(A\sqsupset _{new} A)\vee (A\sqsupset _{new} B)\).
 
11
For more on connexive logics in general, see [19].
 
12
For another interesting case for connexive logics through a natural consideration, see [18]. Note also that Wansing’s approach to connexive logics can be applied to other systems than Nelson logics. For some examples, see [8, 9].
 
13
We would like to thank Massimiliano Carrara for directing our attention to this issue.
 
14
See, for example, [16].
 
15
A more intricate condition on the two relation was proposed by a reviewer, and we thank her or him for the inspiration:
If \(w \le x\) and \(x R_A x'\) then there is a \(w'\in W\) such that \(w R_A w'\) and \(w' \le x'\).
This condition is analogous to what in many-dimensional modal logics is called left-commutativity (see [2, p. 221]). Once parsed, this condition indeed seems eminently plausible. With the vocabulary we have introduced so far, however, it seems that no difference to the consequence relation is made by imposing the condition. This will change when, in later work, we will introduce a suitable might-conditional, a topic we have to leave out for reasons of space. When we will address this, we will be sure to come back to the reviewer’s condition.
 
16
A quote from [14, p. 202].
 
17
In this sense, the example serves to show that we are not overly and unnecessarily ambitious here.
 
Literatur
1.
Zurück zum Zitat Dunn, M.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philos. Stud. 29(3), 149–168 (1976)MathSciNetCrossRef Dunn, M.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philos. Stud. 29(3), 149–168 (1976)MathSciNetCrossRef
2.
Zurück zum Zitat Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications (2003) Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications (2003)
4.
Zurück zum Zitat Kamide, N., Wansing, H.: Proof Theory of N4-Related Paraconsistent Logics. Studies in Logic, vol. 54. College Publications, London (2015)MATH Kamide, N., Wansing, H.: Proof Theory of N4-Related Paraconsistent Logics. Studies in Logic, vol. 54. College Publications, London (2015)MATH
5.
Zurück zum Zitat Kapsner, A.: Logics and Falsifications. Trends in Logic, vol. 40. Springer, Heidelberg (2014)MATH Kapsner, A.: Logics and Falsifications. Trends in Logic, vol. 40. Springer, Heidelberg (2014)MATH
6.
Zurück zum Zitat Lewis, D.K.: Counterfactuals. Blackwell, Boston (1973)MATH Lewis, D.K.: Counterfactuals. Blackwell, Boston (1973)MATH
7.
Zurück zum Zitat Odintsov, S.P.: Constructive Negations and Paraconsistency. Trends in Logic, vol. 26. Springer, Heidelberg (2008)CrossRefMATH Odintsov, S.P.: Constructive Negations and Paraconsistency. Trends in Logic, vol. 26. Springer, Heidelberg (2008)CrossRefMATH
8.
Zurück zum Zitat Omori, H.: A simple connexive extension of the basic relevant logic BD. IfCoLog J. Logics Appl. 3(3), 467–478 (2016) Omori, H.: A simple connexive extension of the basic relevant logic BD. IfCoLog J. Logics Appl. 3(3), 467–478 (2016)
9.
Zurück zum Zitat Omori, H.: From paraconsistent logic to dialetheic logic. In: Andreas, H., Verdée, P. (eds.) Logical Studies of Paraconsistent Reasoning in Science and Mathematics. TL, vol. 45, pp. 111–134. Springer, Cham (2016). doi:10.1007/978-3-319-40220-8_8 CrossRef Omori, H.: From paraconsistent logic to dialetheic logic. In: Andreas, H., Verdée, P. (eds.) Logical Studies of Paraconsistent Reasoning in Science and Mathematics. TL, vol. 45, pp. 111–134. Springer, Cham (2016). doi:10.​1007/​978-3-319-40220-8_​8 CrossRef
12.
Zurück zum Zitat Priest, G.: An Introduction to Non-Classical Logic: From If to Is, 2nd edn. Cambridge University Press, Cambridge (2008)CrossRefMATH Priest, G.: An Introduction to Non-Classical Logic: From If to Is, 2nd edn. Cambridge University Press, Cambridge (2008)CrossRefMATH
14.
Zurück zum Zitat Sider, T.: Logic for Philosophy. Oxford University Press, Oxford (2010) Sider, T.: Logic for Philosophy. Oxford University Press, Oxford (2010)
15.
Zurück zum Zitat Unterhuber, M.: Beyond system P - Hilbert-style convergence results for conditional logics with a connexive twist. IfCoLog J. Logics Appl. 3(3), 377–412 (2016) Unterhuber, M.: Beyond system P - Hilbert-style convergence results for conditional logics with a connexive twist. IfCoLog J. Logics Appl. 3(3), 377–412 (2016)
17.
Zurück zum Zitat Wansing, H.: Connexive modal logic. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 367–383. King’s College Publications, London (2005) Wansing, H.: Connexive modal logic. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 367–383. King’s College Publications, London (2005)
Metadaten
Titel
Counterfactuals in Nelson Logic
verfasst von
Andreas Kapsner
Hitoshi Omori
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55665-8_34