2008 | OriginalPaper | Buchkapitel
Counting Algebraic Numbers with Large Height I
verfasst von : David Masser, Jeffrey D. Vaaler
Erschienen in: Diophantine Approximation
Verlag: Springer Vienna
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Let ℚ denote the field of rational numbers,
an algebraic closure of ℚ, and
H
:
the absolute, multiplicative, Weil height. For each positive integer
d
and real number
$$ \mathcal{H} \geqslant 1 $$
, it is well known that the number
of points α in
having degree
d
over ℚ and satisfying
$$ H\left( \alpha \right) \leqslant \mathcal{H} $$
is finite. This is the one-dimensional case of Northcott’s Theorem [
8
] (see also [5, page 59]). The systematic study of the counting function
, and that of related functions in higher dimensions, was begun by Schmidt [
10
]. It is relatively easy to prove the existence of a positive constant
C = C(d)
such that
(1)
and also the existence of positive constants
c = c(d)
and
$$ \mathcal{H}_0 = \mathcal{H}_0 \left( d \right) $$
such that
(2)