Skip to main content

2023 | OriginalPaper | Buchkapitel

Counting Characteristic Roots of Linear Delay Differential Equations. Part I: Frequency-Sweeping Stability Tests and Applications

verfasst von : Silviu-Iulian Niculescu, Xu-Guang Li, Arben Çela

Erschienen in: Controlling Delayed Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter addresses the stability analysis of linear dynamical systems represented by delay differential equations with a focus on the effects induced by the delay, seen as a parameter, on the dynamical behavior. More precisely, we propose a frequency-sweeping framework for treating the problem, and the stability problem is reformulated in terms of properties of frequency-sweeping curves. The presentation is teaching-oriented and focuses more on discussing the main ideas of the method and their illustration through appropriate examples and less on explicit proofs of the results. Some applications from Life Sciences complete the presentation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The delays may be constant or time-varying, distributed or not over a finite or infinite time-interval, depending on the state vector or not.
 
2
The origins of root locus go back to the works of Evans at the end of the 40s (see, e.g., Evans 1950 and the references therein).
 
3
To the best of the authors’ knowledge, the notion of “frequency-sweeping” was formally introduced by Chen and Latchman (1995), Chen (1995) into a different methodological frame: robust analysis with respect to the delay parameter, seen as an uncertainty, see also Niculescu (2001).
 
4
Under the assumption that the system free of delays is asymptotically stable, the delay margin is the maximal value \(\tau _m>0\) such that the asymptotic stability is guaranteed for all delays inside the interval \([0,\tau _m)\); see also Chen et al. (1995), Chen (1995).
 
5
In this chapter, the root loci are numerically generated by using the DDE-BIFTOOL (Engelborghs et al. 2002; Sieber et al. 2016).
 
6
For further discussions on such topics, we refer to Michiels and Niculescu (2014) and the references therein.
 
7
Such a case may occur in the case of neutral DDEs or if the coefficients of the quasipolynomials depend on the delay parameters.
 
8
For a simple and elementary proof, we refer to Shaughnessy and Kashiwagi (1969).
 
9
It simply guarantees the exponential stability of the trivial solution of the corresponding delay-difference equation.
 
10
The relative degree is defined by \(\deg (a_0)-\deg (a_1)\).
 
11
More precisely, in this configuration (i.e., improperly-posed approximation), a characteristic root appears on the real axis in \(\mathbb {C}_+\) from \(+\infty \) when the delay is increased from 0 to \(0_+\).
 
12
The common roots \(a_0\) and \(a_1\) on \({\text {i}}\mathbb {R}\) are also invariant roots w.r.t. \(\tau \).
 
13
Such a value always exists and it may be 0.
 
14
It is easy to see the way the roots of f and \(f_a\) are linked. For instance, for any pair \(({\text {i}}\omega _s,\tau _s)\in \mathbb {R}_+^*\times \mathbb {R}_+^*\) satisfying \(f({\text {i}}\omega _s,\tau _s)=0\), \(f_a(\omega _s,z_s)=0\), where \(z_s=e^{-{\text {i}}\omega _s}\), etc.
 
15
To the best of the authors’ knowledge, during the 70s, the notions of (stability) switches/reversals appear in Cooke’s publications.
 
16
I.e., the whole set for \(\tau \ge 0\) such that \(NU(\tau )=0\) excluding the possible critical points.
 
17
For an elementary introduction to Puiseux series, we refer to Casas-Alvero (2000).
 
18
More precisely, if \(\lambda _\alpha \) is a critical imaginary root for \(\tau =\tau _{\alpha ,0}\), then the system has a critical imaginary root \(\lambda _\alpha \) for all \(\tau =\tau _{\alpha ,0}+k\frac{{2\pi }}{{{\omega _\alpha }}}\), \(k \in \mathbb {N}\).
 
19
Or other software for scientific computation.
 
20
Here, \(\left( {\begin{array}{c}i+l\\ i\end{array}}\right) \) denotes the number of i-combinations from a set of \(i+l\) elements.
 
21
For instance, in our case, for each k, the Puiseux series has multiple conjugacy classes; next, for each k, the Puiseux series involves many degenerate terms, and finally, the structure of Puiseux series is variable w.r.t. different k.
 
22
Since some DDEs may have critical imaginary roots when \(\tau = 0\), one needs to consider a sufficiently “small” delay value \(\varepsilon >0\).
 
23
The critical root \(\lambda ={\text {i}}\) is a double critical imaginary root at \(\tau =\pi \).
 
24
In our case, one characteristic root is located in the right-half plane \(\mathbb {C}_+\) and the other in the left-half plane \(\mathbb {C}_-\).
 
25
Both the characteristic functions (3) and (11) are standard quasipolynomials.
 
26
The stability of the trivial solution of the neutral delay-difference equation is guaranteed. It is worth mentioning that the case \(\beta =0\) corresponds to the retarded DDE and it was addressed in the previous section.
 
27
It is worth mentioning that \(\lambda ={\text {i}}\) is simple at all \(\tau = (2k + 1)\pi \), \(k \in \mathbb {N}_+\).
 
28
In this case, \({f_i}( \cdot ) = \tanh ( \cdot )\), \(i \in \llbracket 1,4 \rrbracket \) verifying \({f_i}(0) = 0\) and \(f'_i (0) = 1\), \(i \in \llbracket 1,4 \rrbracket \).
 
Literatur
Zurück zum Zitat Ahlfors, L. V. (1979). Complex analysis. McGraw-Hill. Ahlfors, L. V. (1979). Complex analysis. McGraw-Hill.
Zurück zum Zitat Bellman, R., & Cooke, K. L. (1963). Differential-difference equations. New York: Academic Press. MATH Bellman, R., & Cooke, K. L. (1963). Differential-difference equations. New York: Academic Press. MATH
Zurück zum Zitat Chen, J. (1995). On computing the maximal delay intervals for stability of linear delay systems. IEEE Transactions on Automatic Control,  40(6), 1087–1093. MathSciNetCrossRef Chen, J. (1995). On computing the maximal delay intervals for stability of linear delay systems. IEEE Transactions on Automatic Control,  40(6), 1087–1093. MathSciNetCrossRef
Zurück zum Zitat Chen, J., & Latchman, H. A. (1995). Frequency sweeping tests for stability independent of delay. IEEE Transactions on Automatic Control,  40(9), 1640–1645. MathSciNetCrossRef Chen, J., & Latchman, H. A. (1995). Frequency sweeping tests for stability independent of delay. IEEE Transactions on Automatic Control,  40(9), 1640–1645. MathSciNetCrossRef
Zurück zum Zitat Chen, J., Gu, G., & Nett, C. A. (1995). A new method for computing delay margins for stability of linear delay systems. Systems and Control Letters,  26, 107–117. MathSciNetCrossRef Chen, J., Gu, G., & Nett, C. A. (1995). A new method for computing delay margins for stability of linear delay systems. Systems and Control Letters,  26, 107–117. MathSciNetCrossRef
Zurück zum Zitat Chi, J., Gu, K., Niculescu, S. I., & Boussaada, I. (2018a). Stability analysis of systems with delay-dependent coefficients: An overview. IEEE Access,  6, 27392–27407. Chi, J., Gu, K., Niculescu, S. I., & Boussaada, I. (2018a). Stability analysis of systems with delay-dependent coefficients: An overview. IEEE Access,  6, 27392–27407.
Zurück zum Zitat Chi, J., Gu, K., Niculescu, S. I., & Boussaada, I. (2018b). Stability analysis of a more general class of systems with delay-dependent coefficients. IEEE Transactions on Automatic Control,  64(5), 1989–1998. Chi, J., Gu, K., Niculescu, S. I., & Boussaada, I. (2018b). Stability analysis of a more general class of systems with delay-dependent coefficients. IEEE Transactions on Automatic Control,  64(5), 1989–1998.
Zurück zum Zitat Cooke, K. L., & Grossman, Z. (1982). Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications,  86, 592–627. MathSciNetCrossRef Cooke, K. L., & Grossman, Z. (1982). Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications,  86, 592–627. MathSciNetCrossRef
Zurück zum Zitat Cooke, K. L., & van den Driessche, P. (1986). On zeroes of some transcendental equations. Funkcialaj Ekvacioj,  29(1), 77–90. MathSciNetMATH Cooke, K. L., & van den Driessche, P. (1986). On zeroes of some transcendental equations. Funkcialaj Ekvacioj,  29(1), 77–90. MathSciNetMATH
Zurück zum Zitat Datko, R. (1978). A procedure for determination of the exponential stability of certain differential-difference equations. Quarterly of Applied Mathematics,  36, 279–292. MathSciNetCrossRef Datko, R. (1978). A procedure for determination of the exponential stability of certain differential-difference equations. Quarterly of Applied Mathematics,  36, 279–292. MathSciNetCrossRef
Zurück zum Zitat Els’golts’, L. E., & Norkin, S. B. (1973). Introduction to the theory and application of the theory of differential equations with deviating argument. New York, New York: Academic Press. Els’golts’, L. E., & Norkin, S. B. (1973). Introduction to the theory and application of the theory of differential equations with deviating argument. New York, New York: Academic Press.
Zurück zum Zitat Engelborghs, K., Luzyanina, T., & Roose, D. (2002). Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Transactions on Mathematical Software,  28(1), 1–21. MathSciNetCrossRef Engelborghs, K., Luzyanina, T., & Roose, D. (2002). Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Transactions on Mathematical Software,  28(1), 1–21. MathSciNetCrossRef
Zurück zum Zitat Evans, W. E. (1950). Control system synthesis by root locus method. AIEE Transactions,  69, 66–69. Evans, W. E. (1950). Control system synthesis by root locus method. AIEE Transactions,  69, 66–69.
Zurück zum Zitat Fridman, E. (2014). Introduction to time-delay systems: Analysis and control. Boston: Birkhauser. CrossRef Fridman, E. (2014). Introduction to time-delay systems: Analysis and control. Boston: Birkhauser. CrossRef
Zurück zum Zitat Fu, P., Niculescu, S.-I., & Chen, J. (2006). Stability of linear neutral time-delay systems: Exact conditions via matrix pencil solutions. IEEE Transactions on Automatic Control,  51(6), 1063–1069. MathSciNetCrossRef Fu, P., Niculescu, S.-I., & Chen, J. (2006). Stability of linear neutral time-delay systems: Exact conditions via matrix pencil solutions. IEEE Transactions on Automatic Control,  51(6), 1063–1069. MathSciNetCrossRef
Zurück zum Zitat Gryazina, E. N., Polyak, B. T., & Tremba, A. A. (2008). D-decomposition technique state-of-the-art. Automation and Remote Control,  69, 1991–2026. MathSciNetCrossRef Gryazina, E. N., Polyak, B. T., & Tremba, A. A. (2008). D-decomposition technique state-of-the-art. Automation and Remote Control,  69, 1991–2026. MathSciNetCrossRef
Zurück zum Zitat Gu, K. (2012). A review of some subtleties of practical relevance for time-delay systems of neutral type. ISRN Applied Mathematics, pp. 1–46. Gu, K. (2012). A review of some subtleties of practical relevance for time-delay systems of neutral type. ISRN Applied Mathematics, pp. 1–46.
Zurück zum Zitat Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Boston: Birkhäuser. CrossRef Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of time-delay systems. Boston: Birkhäuser. CrossRef
Zurück zum Zitat Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional differential equations. Applied Mathematics Sciences (Vol. 99). New York: Springer. Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional differential equations. Applied Mathematics Sciences (Vol. 99). New York: Springer.
Zurück zum Zitat Hale, J. K., Infante, E. F., & Tsen, F.-S.P. (1985). Stability in linear delay equations. Journal of Mathematical Analysis and Applications,  105(2), 533–555. MathSciNetCrossRef Hale, J. K., Infante, E. F., & Tsen, F.-S.P. (1985). Stability in linear delay equations. Journal of Mathematical Analysis and Applications,  105(2), 533–555. MathSciNetCrossRef
Zurück zum Zitat Hayes, N. D. (1950). Roots of the transcendental equation associated with a certain difference-differential equation. Journal of the London Mathematical Society,  s1–25(3), 226–232. ISSN 1469-7750. Hayes, N. D. (1950). Roots of the transcendental equation associated with a certain difference-differential equation. Journal of the London Mathematical Society,  s1–25(3), 226–232. ISSN 1469-7750.
Zurück zum Zitat Jarlebring, E., & Michiels, W. (2010). Invariance properties in the root sensitivity of time-delay systems with double imaginary roots. Automatica,  46(6), 1112–1115. MathSciNetCrossRef Jarlebring, E., & Michiels, W. (2010). Invariance properties in the root sensitivity of time-delay systems with double imaginary roots. Automatica,  46(6), 1112–1115. MathSciNetCrossRef
Zurück zum Zitat Kashiwagi, Y. (1965). Stability of linear systems with time-delay. Ph.D. thesis, Stanford University. Kashiwagi, Y. (1965). Stability of linear systems with time-delay. Ph.D. thesis, Stanford University.
Zurück zum Zitat Knopp, K. (1996). Theory of Functions, Parts I and II. Mineola, NY: Dover. Knopp, K. (1996). Theory of Functions, Parts I and II. Mineola, NY: Dover.
Zurück zum Zitat Krall, A. M. (1968). Stability techniques for continuous linear systems. New York: Gordon and Breach. MATH Krall, A. M. (1968). Stability techniques for continuous linear systems. New York: Gordon and Breach. MATH
Zurück zum Zitat Lee, M. S., & Hsu, C. S. (1969). On the \(\tau \)-decomposition method of stability analysis for retarded dynamical systems. SIAM Journal on Control,  7(2), 242–259. MathSciNetCrossRef Lee, M. S., & Hsu, C. S. (1969). On the \(\tau \)-decomposition method of stability analysis for retarded dynamical systems. SIAM Journal on Control,  7(2), 242–259. MathSciNetCrossRef
Zurück zum Zitat Li, X., Liu, J.-C., Li, X.-G., Niculescu, S.-I., & Çela, A. (2019a). Reversals in stability of linear time-delay systems: A finer characterization. Automatica, page Article 108479. Li, X., Liu, J.-C., Li, X.-G., Niculescu, S.-I., & Çela, A. (2019a). Reversals in stability of linear time-delay systems: A finer characterization. Automatica, page Article 108479.
Zurück zum Zitat Li, X.-G., Niculescu, S.-I., Çela, A., Wang, H.-H., & Cai, T.-Y. (2014). Invariance properties for a class of quasipolynomials. Automatica,  50, 890–895. MathSciNetCrossRef Li, X.-G., Niculescu, S.-I., Çela, A., Wang, H.-H., & Cai, T.-Y. (2014). Invariance properties for a class of quasipolynomials. Automatica,  50, 890–895. MathSciNetCrossRef
Zurück zum Zitat Li, X.-G., Niculescu, S.-I., & Çela, A. (2015). Analytic curve frequency-sweeping stability tests for systems with commensurate delays. Springer. Li, X.-G., Niculescu, S.-I., & Çela, A. (2015). Analytic curve frequency-sweeping stability tests for systems with commensurate delays. Springer.
Zurück zum Zitat Li, X.-G., Niculescu, S.-I., Çela, A., Zhang, L., & Li, X. (2017). A frequency-sweeping framework for stability analysis of time-delay systems. IEEE Transactions on Automatic Control,  62, 3701–3716. MathSciNetCrossRef Li, X.-G., Niculescu, S.-I., Çela, A., Zhang, L., & Li, X. (2017). A frequency-sweeping framework for stability analysis of time-delay systems. IEEE Transactions on Automatic Control,  62, 3701–3716. MathSciNetCrossRef
Zurück zum Zitat Li, X.-G., Chen, J.-X., Niculescu, S.-I., & Çela, A. (2018a). New insights in stability analysis of delayed Lotka-Volterra systems. Journal of The Franklin Institute,  355(17), 8683–8697. Li, X.-G., Chen, J.-X., Niculescu, S.-I., & Çela, A. (2018a). New insights in stability analysis of delayed Lotka-Volterra systems. Journal of The Franklin Institute,  355(17), 8683–8697.
Zurück zum Zitat Li, X.-G., Chen, J.-X., & Zhang, Y. (2018b). Complete stability analysis with respect to delay for neural networks. IEEE Transactions on Neural Networks and Learning,  29(10), 4672–4682. Li, X.-G., Chen, J.-X., & Zhang, Y. (2018b). Complete stability analysis with respect to delay for neural networks. IEEE Transactions on Neural Networks and Learning,  29(10), 4672–4682.
Zurück zum Zitat Li, X.-G., Niculescu, S.-I., & Çela, A. (2019). An iterative frequency-sweeping approach for stability analysis of linear systems with delays. IMA Journal of Mathematical Control I,  36, 379–398. MathSciNetCrossRef Li, X.-G., Niculescu, S.-I., & Çela, A. (2019). An iterative frequency-sweeping approach for stability analysis of linear systems with delays. IMA Journal of Mathematical Control I,  36, 379–398. MathSciNetCrossRef
Zurück zum Zitat Marden, M. (1949). The geometry of the zeros of a polynomial in the complex plane. Providence, RI: American Mathematical Society. MATH Marden, M. (1949). The geometry of the zeros of a polynomial in the complex plane. Providence, RI: American Mathematical Society. MATH
Zurück zum Zitat Mendéz-Barrios, C.-F., Niculescu, S.-I., Martínez-González, A., Ramírez, A. (2022) Characterizing some improperly-posed problems in PD-control. International Journal of Robust and Nonlinear Control (to appear). Mendéz-Barrios, C.-F., Niculescu, S.-I., Martínez-González, A., Ramírez, A. (2022) Characterizing some improperly-posed problems in PD-control. International Journal of Robust and Nonlinear Control (to appear).
Zurück zum Zitat Michiels, W., & Niculescu, S.-I. (2014). Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue-Based Approach (2nd Edition). SIAM. Michiels, W., & Niculescu, S.-I. (2014). Stability, Control, and Computation for Time-Delay Systems. An Eigenvalue-Based Approach (2nd Edition). SIAM.
Zurück zum Zitat Neimark, J. (1949). D-subdivisions and spaces of quasi-polynomials. Prikl. Mat. Meh.,  13(4), 349–380. Neimark, J. (1949). D-subdivisions and spaces of quasi-polynomials. Prikl. Mat. Meh.,  13(4), 349–380.
Zurück zum Zitat Niculescu, S.-I. (2001). Delay Effects on Stability. A Robust Control Approach. Springer. Niculescu, S.-I. (2001). Delay Effects on Stability. A Robust Control Approach. Springer.
Zurück zum Zitat Niculescu, S.-I., Boussaada, I., Li, X.-G., Mazanti, G., & Mendez-Barrios, C.-F. (2021). Stability, delays and multiple characteristic roots. A guided tour. In Proceedings of the 16th IFAC Workshop on Time-Delay Systems. Niculescu, S.-I., Boussaada, I., Li, X.-G., Mazanti, G., & Mendez-Barrios, C.-F. (2021). Stability, delays and multiple characteristic roots. A guided tour. In Proceedings of the 16th IFAC Workshop on Time-Delay Systems.
Zurück zum Zitat Olgac, N., & Sipahi, R. (2002). An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Transactions on Automatic Control,  47(5), 793–797. MathSciNetCrossRef Olgac, N., & Sipahi, R. (2002). An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Transactions on Automatic Control,  47(5), 793–797. MathSciNetCrossRef
Zurück zum Zitat Olgac, N., & Sipahi, R. (2004). A practical method for analyzing the stability of neutral type LTI-time delayed systems. Automatica,  40(5), 847–853. MathSciNetCrossRef Olgac, N., & Sipahi, R. (2004). A practical method for analyzing the stability of neutral type LTI-time delayed systems. Automatica,  40(5), 847–853. MathSciNetCrossRef
Zurück zum Zitat Pinney, E. (1958). Ordinary difference-differential equations. Univ. California Press. Pinney, E. (1958). Ordinary difference-differential equations. Univ. California Press.
Zurück zum Zitat Pólya, G. (1954). Mathematics and plausible reasoning. Princeton: Princeton University Press. CrossRef Pólya, G. (1954). Mathematics and plausible reasoning. Princeton: Princeton University Press. CrossRef
Zurück zum Zitat Popov, E. P. (1962). The dynamics of automatic control systems. New York, USA: Pergamon Press. Popov, E. P. (1962). The dynamics of automatic control systems. New York, USA: Pergamon Press.
Zurück zum Zitat Shaughnessy, J. D., & Kashiwagi, Y. (1969). The determination of a stability indicative function for linear systems with multiple delays. Technical Report TR R-301, NASA, Washington D. C., USA. Shaughnessy, J. D., & Kashiwagi, Y. (1969). The determination of a stability indicative function for linear systems with multiple delays. Technical Report TR R-301, NASA, Washington D. C., USA.
Zurück zum Zitat Sieber, J., Engelborghs, K., Luzyanina, T., Samaey, G., Roose, D. (2016). Dde-biftool manual - bifurcation analysis of delay differential equations. Sieber, J., Engelborghs, K., Luzyanina, T., Samaey, G., Roose, D. (2016). Dde-biftool manual - bifurcation analysis of delay differential equations.
Zurück zum Zitat Sipahi, R., & Olgac, N. (2003). Degenerate cases in using the direct method. ASME Journal of Dynamic Systems, Measurement, and Control,  125(2), 194–201. CrossRef Sipahi, R., & Olgac, N. (2003). Degenerate cases in using the direct method. ASME Journal of Dynamic Systems, Measurement, and Control,  125(2), 194–201. CrossRef
Zurück zum Zitat Sipahi, R., Niculescu, S., Abdallah, C., Michiels, W., & Gu, K. (2011). Stability and stabilization of systems with time delay. IEEE Control Systems Magazine,  31(1), 38–65. MathSciNetCrossRef Sipahi, R., Niculescu, S., Abdallah, C., Michiels, W., & Gu, K. (2011). Stability and stabilization of systems with time delay. IEEE Control Systems Magazine,  31(1), 38–65. MathSciNetCrossRef
Zurück zum Zitat Tsypkin, Ya. . Z. (1946). The systems with delayed feedback. Avtomathika i Telemecanique,  7, 107–129. Tsypkin, Ya. . Z. (1946). The systems with delayed feedback. Avtomathika i Telemecanique,  7, 107–129.
Metadaten
Titel
Counting Characteristic Roots of Linear Delay Differential Equations. Part I: Frequency-Sweeping Stability Tests and Applications
verfasst von
Silviu-Iulian Niculescu
Xu-Guang Li
Arben Çela
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-01129-0_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.