Skip to main content
Erschienen in: Strength of Materials 1/2016

28.03.2016

Coupled Effects of Strain Rate and Temperature on Deformation Twinning in Cu-Zn Alloy

verfasst von: P. Zhou, J. Q. Zhou, Z. X. Ye, E. Jiang, W. B. Hu, H. L. Le

Erschienen in: Strength of Materials | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cu-Zn alloy is an advanced material with deformation twinning mechanism, which is complicated by coupled effects of temperature and strain rate. In this paper, a theoretical model of Cu-Zn alloy is proposed, which accounts for the coupled effects of strain rate and temperature. The model can accurately predict the experimentally observed tendency of the spacing evolution of twin boundary (TB), and it confirms that low temperature and high strain rate promote deformation twinning. Moreover, it is shown that deformation twining is more susceptible to low temperature than to high strain rate, while TB spacing and twin layer thickness values decrease at high strain rates and low temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. W. Christian and S. Mahajan, “Deformation twinning,” Prog. Mater. Sci., 39, 1–157 (1995).CrossRef J. W. Christian and S. Mahajan, “Deformation twinning,” Prog. Mater. Sci., 39, 1–157 (1995).CrossRef
2.
Zurück zum Zitat L. Zhu, H. Ruan, and X. Li, “Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals,” Acta Mater., 59, 5544–5557 (2011).CrossRef L. Zhu, H. Ruan, and X. Li, “Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals,” Acta Mater., 59, 5544–5557 (2011).CrossRef
3.
Zurück zum Zitat D. M. Kochmann and K. C. Le, “A continuum model for initiation and evolution of deformation twinning,” J. Mech. Phys. Solids, 57, 987–1002 (2009).CrossRef D. M. Kochmann and K. C. Le, “A continuum model for initiation and evolution of deformation twinning,” J. Mech. Phys. Solids, 57, 987–1002 (2009).CrossRef
4.
Zurück zum Zitat A. P Stebner, S. C. Vogel, and R. D. Noebe, “Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in-situ neutron diffraction,” J. Mech. Phys. Solids, 61, 2302–2330 (2013).CrossRef A. P Stebner, S. C. Vogel, and R. D. Noebe, “Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel–titanium during large uniaxial deformations measured via in-situ neutron diffraction,” J. Mech. Phys. Solids, 61, 2302–2330 (2013).CrossRef
5.
Zurück zum Zitat M. A. Meyers, O. Vohringer, and V. A. Lubarda, “The onset of twinning in metals: a constitutive description,” Acta Mater., 49, 4025–4039 (2001).CrossRef M. A. Meyers, O. Vohringer, and V. A. Lubarda, “The onset of twinning in metals: a constitutive description,” Acta Mater., 49, 4025–4039 (2001).CrossRef
6.
Zurück zum Zitat L. Lu and K. Lu, “Ultrahigh strength and high electrical conductivity in copper,” Science, 304, 422–426 (2004).CrossRef L. Lu and K. Lu, “Ultrahigh strength and high electrical conductivity in copper,” Science, 304, 422–426 (2004).CrossRef
7.
Zurück zum Zitat J. Schi¸tz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science, 301, 1357–1359 (2003). J. Schi¸tz and K. W. Jacobsen, “A maximum in the strength of nanocrystalline copper,” Science, 301, 1357–1359 (2003).
8.
Zurück zum Zitat O. Johari and G. Thomas, “Substructures in explosively deformed Cu and Cu-Al alloys,” Acta Metall., 12, 1153–1159 (1964).CrossRef O. Johari and G. Thomas, “Substructures in explosively deformed Cu and Cu-Al alloys,” Acta Metall., 12, 1153–1159 (1964).CrossRef
9.
Zurück zum Zitat M. A. Crimp, B. C. Smith, and D. E. Mikkola, “Substructure development in shock-loaded Cu-8.7Ge and copper: the role of temperature, grain size and stacking fault energy,” Mater. Sci. Eng., 96, 27–40 (1987).CrossRef M. A. Crimp, B. C. Smith, and D. E. Mikkola, “Substructure development in shock-loaded Cu-8.7Ge and copper: the role of temperature, grain size and stacking fault energy,” Mater. Sci. Eng., 96, 27–40 (1987).CrossRef
10.
Zurück zum Zitat L. E. Murr, E. V. Esquivel, and J. Mater, “Observations of common microstructural issues associated with dynamic deformation phenomena: twins, microbands, grain size effects, shear bands, and dynamic recrystallization,” J. Mater. Sci., 39, 1153–1168 (2004).CrossRef L. E. Murr, E. V. Esquivel, and J. Mater, “Observations of common microstructural issues associated with dynamic deformation phenomena: twins, microbands, grain size effects, shear bands, and dynamic recrystallization,” J. Mater. Sci., 39, 1153–1168 (2004).CrossRef
11.
Zurück zum Zitat Y. M. Wang, T. Jiao, and E. Ma, “Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation,” Mater. Trans., 44, 1926–1934 (2003).CrossRef Y. M. Wang, T. Jiao, and E. Ma, “Dynamic processes for nanostructure development in Cu after severe cryogenic rolling deformation,” Mater. Trans., 44, 1926–1934 (2003).CrossRef
12.
Zurück zum Zitat G. H. Xiao and N. R. Tao, “Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy,” Scripta Mater., 59, 975–978 (2008).CrossRef G. H. Xiao and N. R. Tao, “Effects of strain, strain rate and temperature on deformation twinning in a Cu-Zn alloy,” Scripta Mater., 59, 975–978 (2008).CrossRef
13.
Zurück zum Zitat X. Liang and X. San, “Studies on the mechanism of the alloy compression behavior,” J. Kunming Univ. Sci. Technol., 36, 23–28 (2011). X. Liang and X. San, “Studies on the mechanism of the alloy compression behavior,” J. Kunming Univ. Sci. Technol., 36, 23–28 (2011).
14.
Zurück zum Zitat S. Nemat-Nasser and Y. Li, “Flow stress of fcc polycrystals with application to OFHC Cu,” Acta Mater., 46, 565–577 (1998).CrossRef S. Nemat-Nasser and Y. Li, “Flow stress of fcc polycrystals with application to OFHC Cu,” Acta Mater., 46, 565–577 (1998).CrossRef
15.
Zurück zum Zitat G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” in: Proc. of the Seventh Int. Symp. on Ballistics (April 19–21, 1983, the Hague, the Netherlands), the Hague (1983), pp. 541–547. G. R. Johnson and W. H. Cook, “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” in: Proc. of the Seventh Int. Symp. on Ballistics (April 19–21, 1983, the Hague, the Netherlands), the Hague (1983), pp. 541–547.
16.
Zurück zum Zitat G. H. Xiao, N. R. Tao, and K. Lu, “Strength–ductility combination of nanostructured Cu-Zn alloy with nanotwin bundles,” Scripta Mater., 65, 119–122 (2011).CrossRef G. H. Xiao, N. R. Tao, and K. Lu, “Strength–ductility combination of nanostructured Cu-Zn alloy with nanotwin bundles,” Scripta Mater., 65, 119–122 (2011).CrossRef
17.
Zurück zum Zitat R. Kossowsky and N. Brown, “Microyielding in iron at low temperatures/Microdeformation du fer a basse temperature/Mikroflie_en in eisen bei tiefen temperaturen,” Acta Metall., 14, 131–139 (1966).CrossRef R. Kossowsky and N. Brown, “Microyielding in iron at low temperatures/Microdeformation du fer a basse temperature/Mikroflie_en in eisen bei tiefen temperaturen,” Acta Metall., 14, 131–139 (1966).CrossRef
18.
Zurück zum Zitat M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press (2009), ISBN: 978-0-521-86675-0. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Cambridge University Press (2009), ISBN: 978-0-521-86675-0.
19.
Zurück zum Zitat S. Zhang, J. Zhou, L. Wang, and Y. Wang “The effect of the angle between loading axis and twin boundary on the mechanical behaviors of nanotwinned materials,” Mater. Design, 45, 292–299 (2013).CrossRef S. Zhang, J. Zhou, L. Wang, and Y. Wang “The effect of the angle between loading axis and twin boundary on the mechanical behaviors of nanotwinned materials,” Mater. Design, 45, 292–299 (2013).CrossRef
20.
Zurück zum Zitat R. J. Klassen and M. Haghshenas, “Indentation-based assessment of the dependence of geometrically necessary dislocations upon depth and strain rate in FCC materials,” Mater. Sci. Eng. A, 586, 223–230 (2013).CrossRef R. J. Klassen and M. Haghshenas, “Indentation-based assessment of the dependence of geometrically necessary dislocations upon depth and strain rate in FCC materials,” Mater. Sci. Eng. A, 586, 223–230 (2013).CrossRef
21.
Zurück zum Zitat M. Fisk, J. C. Ion, and L.-E. Lindgren, “Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment,” Comput. Mater. Sci., 82, 531–539 (2014).CrossRef M. Fisk, J. C. Ion, and L.-E. Lindgren, “Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment,” Comput. Mater. Sci., 82, 531–539 (2014).CrossRef
22.
Zurück zum Zitat I. Karaman, H. Sehitoglu, A. J. Beaudoin, et al., “Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip,” Acta Mater., 48, 2031–2047 (2000).CrossRef I. Karaman, H. Sehitoglu, A. J. Beaudoin, et al., “Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip,” Acta Mater., 48, 2031–2047 (2000).CrossRef
23.
Zurück zum Zitat A. Mishra, B. K. Kad, F. Gregori, and M. A. Meyers, “Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis,” Acta Mater., 55, 13–28 (2007).CrossRef A. Mishra, B. K. Kad, F. Gregori, and M. A. Meyers, “Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis,” Acta Mater., 55, 13–28 (2007).CrossRef
Metadaten
Titel
Coupled Effects of Strain Rate and Temperature on Deformation Twinning in Cu-Zn Alloy
verfasst von
P. Zhou
J. Q. Zhou
Z. X. Ye
E. Jiang
W. B. Hu
H. L. Le
Publikationsdatum
28.03.2016
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2016
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-016-9739-2

Weitere Artikel der Ausgabe 1/2016

Strength of Materials 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.