Skip to main content
Erschienen in: Experiments in Fluids 1/2021

01.01.2021 | Research Article

Coupled measurements of interface topography and three-dimensional velocity field of a free surface flow

Erschienen in: Experiments in Fluids | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Complete energy balance evaluations for interfacial flow require simultaneous coupled estimations of the free surface topography and the flow velocity beneath the surface. We describe here an extension of the tomographic PIV and volumetric LPT technique for this coupled measurement. We applied this optical measurement technique to the study of three-dimensional (3D) flow at the air–water interface during the controlled fall of a droplet. Our original setup made it possible to monitor, in real time, the 3D position of fluorescent tracer particles, both on the surface and in the bulk flow. We overcame the shadow effect due to the presence of waves at the interface by illuminating the flow through the underside of a truncated squared pyramidal water tank. We chose to use a water tank of this shape to ensure that optical access could be established orthogonally through the walls of the tank. Four high-speed cameras were focused on the illuminated volume of the flow through the four lateral sides of the pyramidal water tank. The images of the four cameras were analyzed by 3D Lagrangian particle tracking velocimetry (Schanz et al. 2016). With this technique, we were able to track particles accurately at seeding densities compatible with the thresholds for tomographic PIV and to reduce considerably the number of ghost particles. We then obtained local 3D velocities by interpolating vector volumes from the discrete particles. The energy balance was determined by evaluating interface position and bulk flow velocity. Surface curvature and potential energy were determined from surface topography. The kinetic energy of the flow was derived from the bulk flow velocities. We then compared the energy balance thus obtained with that derived from direct visualization of the impact of the same drop. Our findings demonstrate the ability of this technique to characterize such complex interfacial flows in terms of their energetics.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agbaglah G, Thoraval MJ, Thoroddsen ST, Zhang LV, Fezzaa K, Deegan RD (2015) Drop impact into a deep pool: vortex shedding and jet formation. J Fluid Mech 764:764R1–764R12CrossRef Agbaglah G, Thoraval MJ, Thoroddsen ST, Zhang LV, Fezzaa K, Deegan RD (2015) Drop impact into a deep pool: vortex shedding and jet formation. J Fluid Mech 764:764R1–764R12CrossRef
Zurück zum Zitat Aureli F, Maranzoni A, Mignosa P, Ziveri C (2011) An image processing technique for measuring free surface of dam-break flows. Exp Fluids 50:665–675CrossRef Aureli F, Maranzoni A, Mignosa P, Ziveri C (2011) An image processing technique for measuring free surface of dam-break flows. Exp Fluids 50:665–675CrossRef
Zurück zum Zitat Benusiglio A, Quéré D, Clanet C (2014) Explosions at the water surface. J Fluid Mech 752:123–139CrossRef Benusiglio A, Quéré D, Clanet C (2014) Explosions at the water surface. J Fluid Mech 752:123–139CrossRef
Zurück zum Zitat Chatellier L, Jarny S, Gibouin F, David L (2013) A parametric PIV/DIC method for the measurement of free surface flows. Exp Fluids 54:1488–1503CrossRef Chatellier L, Jarny S, Gibouin F, David L (2013) A parametric PIV/DIC method for the measurement of free surface flows. Exp Fluids 54:1488–1503CrossRef
Zurück zum Zitat Cobelli PJ, Maurel A, Pagneux V, Petitjeans P (2009) Global measurement of water waves by Fourier transform profilometry. Exp Fluids 46:1037–1047CrossRef Cobelli PJ, Maurel A, Pagneux V, Petitjeans P (2009) Global measurement of water waves by Fourier transform profilometry. Exp Fluids 46:1037–1047CrossRef
Zurück zum Zitat Douxchamps D, Devriendt D, Capart H, Craeye C, MacQ B, Zech Y (2005) Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows. Exp Fluids 39:533–551CrossRef Douxchamps D, Devriendt D, Capart H, Craeye C, MacQ B, Zech Y (2005) Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows. Exp Fluids 39:533–551CrossRef
Zurück zum Zitat du Noüy PL (1925) An interfacial tensiometer for universal use. J Gen Physiol 7:625–632CrossRef du Noüy PL (1925) An interfacial tensiometer for universal use. J Gen Physiol 7:625–632CrossRef
Zurück zum Zitat Fouras A, Lo Jacono D, Sheard GJ, Hourigan K (2008) Measurement of instantaneous velocity and surface topography in the wake of a cylinder at low Reynolds number. J Fluids Struct 24:1271–1277CrossRef Fouras A, Lo Jacono D, Sheard GJ, Hourigan K (2008) Measurement of instantaneous velocity and surface topography in the wake of a cylinder at low Reynolds number. J Fluids Struct 24:1271–1277CrossRef
Zurück zum Zitat Gao P, Feng JJ (2010) A numerical investigation of the propulsion of water walkers. J Fluid Mech 668:363–383MathSciNetCrossRef Gao P, Feng JJ (2010) A numerical investigation of the propulsion of water walkers. J Fluid Mech 668:363–383MathSciNetCrossRef
Zurück zum Zitat Gesemann S, Huhn F, Schanz D, Schröder A (2016) From particle tracks to velocity and acceleration fields using B-splines and penalties. In: 18th international symposium on the application of laser and imaging techniques to fluid mechanics, Lisbon, Portugal Gesemann S, Huhn F, Schanz D, Schröder A (2016) From particle tracks to velocity and acceleration fields using B-splines and penalties. In: 18th international symposium on the application of laser and imaging techniques to fluid mechanics, Lisbon, Portugal
Zurück zum Zitat Ghabache E, Antkowiak A, Josserand C, Séon T (2014) On the physics of fizziness: how bubble bursting controls droplets ejection. Phys Fluids 26:121701CrossRef Ghabache E, Antkowiak A, Josserand C, Séon T (2014) On the physics of fizziness: how bubble bursting controls droplets ejection. Phys Fluids 26:121701CrossRef
Zurück zum Zitat Gilet T, Bourouiba L (2015) Fluid fragmentation shapes rain-induced foliar disease transmission. J R Soc Interface 12 Gilet T, Bourouiba L (2015) Fluid fragmentation shapes rain-induced foliar disease transmission. J R Soc Interface 12
Zurück zum Zitat Gomit G, Chatellier L, Calluaud D, David L (2013) Free surface measurement by stereo-refraction. Exp Fluids 54:1540–1551CrossRef Gomit G, Chatellier L, Calluaud D, David L (2013) Free surface measurement by stereo-refraction. Exp Fluids 54:1540–1551CrossRef
Zurück zum Zitat Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666CrossRef Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666CrossRef
Zurück zum Zitat Jeon YJ, Gomit G, Earl T, Chatellier L, David L (2018) Sequential least-square reconstruction of instantaneous pressure field around a body from TR-PIV. Exp Fluids 59:1–15CrossRef Jeon YJ, Gomit G, Earl T, Chatellier L, David L (2018) Sequential least-square reconstruction of instantaneous pressure field around a body from TR-PIV. Exp Fluids 59:1–15CrossRef
Zurück zum Zitat Joung YS, Buie CR (2015) Aerosol generation by raindrop impact on soil. Nat Commun 6:1–9CrossRef Joung YS, Buie CR (2015) Aerosol generation by raindrop impact on soil. Nat Commun 6:1–9CrossRef
Zurück zum Zitat Leng LJ (2002) Splash formation by spherical drops. J Fluid Mech 427:73–105CrossRef Leng LJ (2002) Splash formation by spherical drops. J Fluid Mech 427:73–105CrossRef
Zurück zum Zitat Michon GJ, Josserand C, Séon T (2017) Jet dynamics post drop impact on a deep pool. Phys Rev Fluids 2:1–13CrossRef Michon GJ, Josserand C, Séon T (2017) Jet dynamics post drop impact on a deep pool. Phys Rev Fluids 2:1–13CrossRef
Zurück zum Zitat Moisy F, Rabaud M, Salsac K (2009) A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46:1021–1036CrossRef Moisy F, Rabaud M, Salsac K (2009) A synthetic Schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46:1021–1036CrossRef
Zurück zum Zitat Ng I, Kumar V, Sheard GJ, Hourigan K, Fouras A (2011) Experimental study of simultaneous measurement of velocity and surface topography: in the wake of a circular cylinder at low Reynolds number. Exp Fluids 50:587–595CrossRef Ng I, Kumar V, Sheard GJ, Hourigan K, Fouras A (2011) Experimental study of simultaneous measurement of velocity and surface topography: in the wake of a circular cylinder at low Reynolds number. Exp Fluids 50:587–595CrossRef
Zurück zum Zitat Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced MART for tomographic PIV. Meas Sci Technol 21:035401CrossRef Novara M, Batenburg KJ, Scarano F (2010) Motion tracking-enhanced MART for tomographic PIV. Meas Sci Technol 21:035401CrossRef
Zurück zum Zitat Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61CrossRef Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12:61CrossRef
Zurück zum Zitat Rein M (1996) The transitional regime between coalescing and splashing drops. J Fluid Mech 306:145–165CrossRef Rein M (1996) The transitional regime between coalescing and splashing drops. J Fluid Mech 306:145–165CrossRef
Zurück zum Zitat Saylor JR (2003) The fate of soluble and insoluble surfactant monolayers subjected to drop impacts. Exp Fluids 34:540–547CrossRef Saylor JR (2003) The fate of soluble and insoluble surfactant monolayers subjected to drop impacts. Exp Fluids 34:540–547CrossRef
Zurück zum Zitat Saylor JR, Grizzard NK (2003) The effect of surfactant monolayers on vortex rings formed from an impacting water drop. Phys Fluids 15:2852–2863CrossRef Saylor JR, Grizzard NK (2003) The effect of surfactant monolayers on vortex rings formed from an impacting water drop. Phys Fluids 15:2852–2863CrossRef
Zurück zum Zitat Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24:012001CrossRef Scarano F (2013) Tomographic PIV: principles and practice. Meas Sci Technol 24:012001CrossRef
Zurück zum Zitat Schanz D, Gesemann S, Schröder A (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:1–27CrossRef Schanz D, Gesemann S, Schröder A (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:1–27CrossRef
Zurück zum Zitat Schneiders JF, Pröbsting S, Dwight RP, van Oudheusden BW, Scarano F (2016) Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer. Exp Fluids 57:1–14CrossRef Schneiders JF, Pröbsting S, Dwight RP, van Oudheusden BW, Scarano F (2016) Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer. Exp Fluids 57:1–14CrossRef
Zurück zum Zitat Steinmann T, Arutkin M, Cochard P, Raphaël E, Casas J, Benzaquen M (2018) Unsteady wave pattern generation by water striders. J Fluid Mech 848:370–387CrossRef Steinmann T, Arutkin M, Cochard P, Raphaël E, Casas J, Benzaquen M (2018) Unsteady wave pattern generation by water striders. J Fluid Mech 848:370–387CrossRef
Zurück zum Zitat Thoraval MJ, Li Y, Thoroddsen ST (2016) Vortex-ring-induced large bubble entrainment during drop impact. Phys Rev E 93:1–10CrossRef Thoraval MJ, Li Y, Thoroddsen ST (2016) Vortex-ring-induced large bubble entrainment during drop impact. Phys Rev E 93:1–10CrossRef
Zurück zum Zitat Turney DE, Anderer A, Banerjee S (2009) A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air–water interface. Meas Sci Technol 20:045403CrossRef Turney DE, Anderer A, Banerjee S (2009) A method for three-dimensional interfacial particle image velocimetry (3D-IPIV) of an air–water interface. Meas Sci Technol 20:045403CrossRef
Zurück zum Zitat Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556CrossRef Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556CrossRef
Zurück zum Zitat Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008CrossRef Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008CrossRef
Zurück zum Zitat Wildeman S (2018) Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop. Exp Fluids 59:1–13CrossRef Wildeman S (2018) Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop. Exp Fluids 59:1–13CrossRef
Zurück zum Zitat Yarin A (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192MathSciNetCrossRef Yarin A (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192MathSciNetCrossRef
Zurück zum Zitat Zhang Y, Liu P, Qu Q, Hu T (2019) Energy conversion during the crown evolution of the drop impact upon films. Int J Multiphase Flow 115:40–61CrossRef Zhang Y, Liu P, Qu Q, Hu T (2019) Energy conversion during the crown evolution of the drop impact upon films. Int J Multiphase Flow 115:40–61CrossRef
Metadaten
Titel
Coupled measurements of interface topography and three-dimensional velocity field of a free surface flow
Publikationsdatum
01.01.2021
Erschienen in
Experiments in Fluids / Ausgabe 1/2021
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-020-03115-1

Weitere Artikel der Ausgabe 1/2021

Experiments in Fluids 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.