Zum Inhalt

Coupling and Ergodic Theorems for Semi-Markov-Type Processes I

Markov Chains, Renewal, and Regenerative Processes

  • 2025
  • Buch
insite
SUCHEN

Über dieses Buch

Ergodische Theoreme sind ein Eckpfeiler der Theorie stochastischer Prozesse und ihrer Anwendung. Dieser Band vertieft sich in ergodische Theoreme mit expliziter Macht und exponentiellen Obergrenzen für Konvergenzraten, wobei der Schwerpunkt auf Markov-Ketten, Erneuerungsprozessen und regenerativen Prozessen liegt. Das Buch bietet einen starken und konstruktiven probabilistischen Rahmen, indem es die elegante Kopplungsmethode in Verbindung mit Testfunktionen anwendet. Theoretische Erkenntnisse werden anhand von Anwendungen auf gestörte stochastische Netzwerke, abwechselnde Markov-Prozesse, Risikoprozesse, quasi-stationäre Verteilungen und das Erneuerungstheorem veranschaulicht, die alle explizite Grenzen der Konvergenzrate aufweisen. Viele der hier vorgestellten Ergebnisse sind bahnbrechend und erscheinen zum ersten Mal in einer Veröffentlichung. Dies ist der erste Band einer zweibändigen Monographie, die ergodischen Theoremen gewidmet ist. Während sich dieser Band auf Markovische und regenerative Modelle konzentriert, wird der Umfang des zweiten Bandes auf semi-Markov-Prozesse und multi-alternierende regenerative Prozesse mit semi-Markov-Modulation ausgeweitet. Die Inhalte wurden für Forscher und fortgeschrittene Studenten konzipiert und sind aufgrund ihrer Komplexität durchdacht strukturiert, wodurch sie sich für das Selbststudium oder als Ressource für höhere Lehrveranstaltungen eignen. Jedes Kapitel ist in sich abgeschlossen und wird durch eine umfassende Bibliographie ergänzt, die seinen Wert als dauerhafte Nachschlagewerk sicherstellt. Dieses Buch ist eine unverzichtbare Ressource für theoretische und angewandte Forschung und leistet einen bedeutenden Beitrag auf dem Gebiet stochastischer Prozesse. Es wird auch in den kommenden Jahren eine wichtige Referenz bleiben.

Inhaltsverzeichnis

Frontmatter
Chapter 1. Introduction
Abstract
The chapter is an introduction to the book devoted to studying ergodic theorems with explicit power and exponential upper bounds for convergence rates for Markov chains, renewal, and regenerative processes obtained using the coupling method and the method of test functions. It informally presents the main problems, methods, and algorithms that comprise the book’s contents, gives simple examples illustrated by 15 figures, and tries to show the logic and ideas underlying the coupling method and the method of test functions and their applications for obtaining ergodic theorems with explicit upper bounds for convergence rates for Markov chains, renewal, and regenerative processes, as well as to explain the meaning of the results presented in the book.
Dmitrii Silvestrov
Chapter 2. Coupling for Random Variables
Abstract
In Chap. 2, the coupling constructions are described for discrete finite-values random variables, random variables with absolutely continuous distributions, and general random variables taking values in measurable spaces. We give the explicit expressions for maximal coupling probability for random vectors with prescribed marginal distributions of components, the explicit form of the two-dimensional distribution with maximal coupling probability, and stochastic representation for a random vector with maximal coupling probability, as well as give formulas connecting the maximal coupling probability with the variational distance for the corresponding marginal distributions and an explicit formula for this variational distance for absolutely continuous distributions it in terms of the corresponding marginal probability density functions. We also describe the structure of the family of two-dimensional distribution with conditional maximal coupling probability, and give some results concerning the approximation of maximal coupling probability for general and discrete random variables.
Dmitrii Silvestrov
Chapter 3. Coupling and Ergodic Theorems for Finite Markov Chains
Abstract
In Chap. 10.​1007/​978-3-031-89311-7_​3, the maximal coupling constructions are described for discrete-time, homogeneous Markov chains with finite state spaces. The main features of the coefficients of ergodicity, which play a key role in ergodic theorems with an exponential rate of convergence, are described, and ergodic relations for finite Markov chains with explicit exponential upper bounds for convergence rates are obtained using the coupling method. Relationships of coupling ergodic theorems for finite Markov chains with the Perron-Frobenius theorem are discussed. Also, modifications of the above coupling ergodic theorems for Markov chains with a general communicative structure of state spaces and ergodic theorems with explicit upper bounds for convergence rates for finite, discrete-time Markov chains with damping perturbed matrices of transition probabilities are given.
Dmitrii Silvestrov
Chapter 4. Coupling and Ergodic Theorems for General Markov Chains
Abstract
In Chap. 10.​1007/​978-3-031-89311-7_​4, we present ergodic theorems with explicit exponential upper bounds for convergence rates for discrete-time, homogeneous Markov chains with general state spaces. The coefficients of ergodicity, which play a key role in ergodic theorems, are introduced, and the corresponding maximal coupling constructions are described. Ergodic theorems with exponential upper bounds for convergence rates for general Markov chains are obtained using the coupling method. Modifications of these ergodic theorems for Markov chains with transition distribution possessing absolutely continuous components are also given.
Dmitrii Silvestrov
Chapter 5. Hitting Times and Method of Test Functions
Abstract
In this chapter, we present upper bounds for power and exponential moments of hitting times for semi-Markov processes obtained using the method of test functions. Hitting times and their moments play key roles in getting upper bounds for moments of coupling times and the corresponding explicit upper bounds for convergence rates in ergodic theorems for regenerative and semi-Markov-type processes. We introduce generalized hitting times and describe power transformations of such functionals, derive integral equations for power and exponential moments of Markov generalized hitting times and obtain serial representations for these moments as minimal solutions of these equations. Upper bounds for power moments of Markov generalized hitting times are given in terms of recursive test functions. Also, necessary and sufficient conditions for the finiteness of power moments for partially monotonic functionals of Markov generalized hitting times are given. Analogous results are obtained for fractional power-type and exponential moments of Markov generalized hitting times.
Dmitrii Silvestrov
Chapter 6. Approaching of Renewal Schemes
Abstract
In this chapter, we present the algorithm of approaching renewal points for two independent renewal schemes to a distance less than or equal to some H > 0 appearing as a result of alternating overjumps for renewal points of these renewal schemes. We define a renewal scheme, informally formulate and describe the coupling problem for renewal schemes, present the corresponding approaching renewal algorithm, and give explicit upper bounds for power and exponential moments of approaching times for renewal points using the method of test function. We also give explicit upper bounds for power and exponential moments of approaching times of renewal points uniform with respect to the initial distance between renewal points.
Dmitrii Silvestrov
Chapter 7. Synchronizing of Shifted Renewal Schemes
Abstract
In Chap. 10.​1007/​978-3-031-89311-7_​7, we present the synchronizing (coupling) algorithm for shifted renewal points of two renewal schemes and give explicit lower bounds for the corresponding coupling probabilities and upper bounds for power and exponential moments for deviations of non-coupled shifted renewal points. These results are based on relations describing maximal coupling for a nonnegative random variable with a prescribed distribution function and its shifted version. The explicit expressions for maximal coupling probability and two-dimensional distribution with maximal coupling probability are given. Also, a stochastic representation for a random vector with maximal coupling probability and a formula connecting the maximal coupling probability with the variational distance for the corresponding marginal distribution functions are given. Continuity and other features of the maximal coupling probability (as a function of the shift parameter) are described.
Dmitrii Silvestrov
Chapter 8. Coupling for Renewal Schemes
Abstract
In Chap.8, the coupling algorithm of exact coupling for renewal schemes is described. It is based on the “gluing” of blocks in the alternating sequence of approaching and synchronizing blocks of renewal points up to the first successful synchronization of renewal points and the following continuation of both renewal schemes using one sequence of renewal points. We also give explicit upper bounds for coupling tail probabilities and power and exponential moments of coupling times. We show that the coupling time for renewal schemes can be represented as the first hitting time to some domain for a semi-Markov process associated with the coupled renewal schemes and give various lower bounds for coupling probability and upper bounds for power and exponential moments of coupling times for renewal schemes using the method of test functions.
Dmitrii Silvestrov
Chapter 9. Coupling and Ergodic Theorems for Regenerative Processes
Abstract
In Chap. 9, we describe the coupling algorithm for regenerative processes and present ergodic theorems for regenerative processes with explicit upper bounds for convergence rates in these theorems. We present alternative equivalent definitions of a regenerative process with a transition period, consider renewal equations for one-dimensional distributions of the regenerative process, show that the characteristics of the regenerative process related to its transition period can be chosen in the way providing stationarity of one-dimensional distributions of the regenerative process, and present a coupling algorithm for regenerative processes. These results let us obtain the main ergodic for regenerative processes with explicit power and exponential upper bounds for variational distances between one-dimensional distributions of regenerative processes and the corresponding stationary distributions, using upper bounds for power and exponential moments of coupling times for renewal schemes.
Dmitrii Silvestrov
Chapter 10. Uniform Ergodic Theorems for Regenerative Processes
Abstract
In Chap. 10, we consider an infinite family of regenerative processes and present ergodic theorems with explicit power and exponential upper bounds for rates of convergence uniform with respect to this family. We present uniform ergodic theorems for the regenerative processes based on the first and second moments of regeneration times. Then, we present uniform ergodic theorems for the regenerative processes based on the high-order power moments for regeneration times. Finally, we present uniform ergodic theorems for the regenerative processes based on exponential moments for regeneration times.
Dmitrii Silvestrov
Chapter 11. Generalized Ergodic Theorems for Regenerative Processes
Abstract
In Chap. 10.​1007/​978-3-031-89311-7_​11, we consider a family of bounded functionals defined on trajectories of a time-shifted regenerative process and present uniform (with respect to this family) ergodic theorems with explicit upper bounds for convergence rates for expectations of these functionals. An important application of these theorems is uniform ergodic theorems for shifted-in-time finite-dimensional distributions of regenerative processes. Also, ergodic theorems with explicit upper bounds for convergence rates are given for thinned regenerative processes.
Dmitrii Silvestrov
Chapter 12. Coupling and the Renewal Theorem
Abstract
In Chap. 12, the variants of the renewal theorem with explicit upper bounds of convergence rates are given for a renewal equation generated by a distribution function F with an absolutely continuous component and the free term of this equation, which is dominated by the tail probabilities of F. These theorems are also specified for the case of the so-called alternating renewal equations. We show how such theorems can be used for obtaining ergodic theorems for real-valued, time-homogeneous, strongly Markov processes. We also present variants of the renewal theorem with explicit upper bounds for convergence rates for an improper renewal equation. A typical example of applications connected with the so-called quasi-stationary ergodic theorems is discussed. The aforementioned theorems are also illustrated by explicit upper bounds for rates of convergence in the classical Cramér–Lundberg approximation for ruin probabilities for risk processes.
Dmitrii Silvestrov
Backmatter
Titel
Coupling and Ergodic Theorems for Semi-Markov-Type Processes I
Verfasst von
Dmitrii Silvestrov
Copyright-Jahr
2025
Electronic ISBN
978-3-031-89311-7
Print ISBN
978-3-031-89310-0
DOI
https://doi.org/10.1007/978-3-031-89311-7

Die PDF-Dateien dieses Buches wurden gemäß dem PDF/UA-1-Standard erstellt, um die Barrierefreiheit zu verbessern. Dazu gehören Bildschirmlesegeräte, beschriebene nicht-textuelle Inhalte (Bilder, Grafiken), Lesezeichen für eine einfache Navigation, tastaturfreundliche Links und Formulare sowie durchsuchbarer und auswählbarer Text. Wir sind uns der Bedeutung von Barrierefreiheit bewusst und freuen uns über Anfragen zur Barrierefreiheit unserer Produkte. Bei Fragen oder Bedarf an Barrierefreiheit kontaktieren Sie uns bitte unter accessibilitysupport@springernature.com.

    Bildnachweise
    Salesforce.com Germany GmbH/© Salesforce.com Germany GmbH, IDW Verlag GmbH/© IDW Verlag GmbH, Diebold Nixdorf/© Diebold Nixdorf, Ratiodata SE/© Ratiodata SE, msg for banking ag/© msg for banking ag, C.H. Beck oHG/© C.H. Beck oHG, OneTrust GmbH/© OneTrust GmbH, Governikus GmbH & Co. KG/© Governikus GmbH & Co. KG, Horn & Company GmbH/© Horn & Company GmbH, EURO Kartensysteme GmbH/© EURO Kartensysteme GmbH, Jabatix S.A./© Jabatix S.A.