Skip to main content

04.12.2024

Coupling Machine Learning and Visualization Approaches to Individual- and Road-level Driving Behavior Analysis in a V2X Environment

verfasst von: Xuantong Wang, Jing Li, Theo Canji, Tong Zhang

Erschienen in: International Journal of Intelligent Transportation Systems Research

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vehicle-to-Everything (V2X) infrastructure generates a vast amount of data from sensor-equipped vehicles and road infrastructure. The availability of such data provides new opportunities to explore and understand drivers' behaviors in diverse scenarios and how road characteristics affect driving actions. Effectively extracting and communicating driving behaviors from this huge volume of data in a timely manner presents a significant challenge. In this paper, we introduce a novel approach that combines machine learning and visualization techniques to support the exploration and analysis of driving behaviors using extensive vehicle status data from V2X infrastructure. Our approach consists of three core components: a spatiotemporal driving behavior feature learning model, a combined individual- and road-level driving behavior clustering method, and a multi-level visualization framework. The feature learning model for driving behavior detection employs a bi-directional spatiotemporal attentive long short-term memory network mechanism to extract essential individualized driving behaviors. Time series vehicle status and location data are then transformed and represented as feature vectors so that an unsupervised clustering method can be applied to identify representative types of driving behaviors and assign clustering labels to individual feature vectors. Furthermore, the model aggregates clustering labels by road, enabling the examination of driving patterns in the context of road conditions. To facilitate the interpretation of feature vectors and clustering results, our visualization framework offers a set of multi-level designs that support visual analytics on both trajectory and road levels. This approach contributes to driving analysis by utilizing massive real-world V2X data. It specifically addresses existing limitations in combining machine learning with visualization to support intelligent discovery of traffic patterns in an automatic manner. This not only enhances efficiency, but also ensures improved explainability and transparency for interpreting results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang, J., Shao, Y., Ge, Y., Yu, R.: A survey of vehicle to everything (V2X) testing. Sensors 19(2), 334 (2019)CrossRef Wang, J., Shao, Y., Ge, Y., Yu, R.: A survey of vehicle to everything (V2X) testing. Sensors 19(2), 334 (2019)CrossRef
2.
Zurück zum Zitat Hu, J., Xu, L., He, X., Meng, W.: Abnormal driving detection based on normalized driving behavior. IEEE Trans. Veh. Technol. 66(8), 6645–6652 (2017)CrossRef Hu, J., Xu, L., He, X., Meng, W.: Abnormal driving detection based on normalized driving behavior. IEEE Trans. Veh. Technol. 66(8), 6645–6652 (2017)CrossRef
4.
Zurück zum Zitat Ribeiro, B., Nicolau, M.J., Santos, A.: Using machine learning on V2X communications data for VRU collision prediction. Sensors 23(3), 1260 (2023)CrossRef Ribeiro, B., Nicolau, M.J., Santos, A.: Using machine learning on V2X communications data for VRU collision prediction. Sensors 23(3), 1260 (2023)CrossRef
5.
Zurück zum Zitat Jung, C., Lee, D., Lee, S., Shim, D.H.: V2X-communication-aided autonomous driving: System design and experimental validation. Sensors 20(10), 2903 (2020)CrossRef Jung, C., Lee, D., Lee, S., Shim, D.H.: V2X-communication-aided autonomous driving: System design and experimental validation. Sensors 20(10), 2903 (2020)CrossRef
6.
Zurück zum Zitat Mantouka, E., Barmpounakis, E., Vlahogianni, E., Golias, J.: Smartphone sensing for understanding driving behavior: current practice and challenges. Int. J. Transp. Sci. Technol. 10(3), 266–282 (2021)CrossRef Mantouka, E., Barmpounakis, E., Vlahogianni, E., Golias, J.: Smartphone sensing for understanding driving behavior: current practice and challenges. Int. J. Transp. Sci. Technol. 10(3), 266–282 (2021)CrossRef
7.
Zurück zum Zitat Wang, J., Huang, H., Li, Y., Zhou, H., Liu, J., Xu, Q.: Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis. Accid. Anal. Prev. 145, 105680 (2020)CrossRef Wang, J., Huang, H., Li, Y., Zhou, H., Liu, J., Xu, Q.: Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis. Accid. Anal. Prev. 145, 105680 (2020)CrossRef
10.
Zurück zum Zitat Gelbal,S.Y.: Cantas, M.R.: Guvenc, B.A.: Guvenc, L.: Virtual and real data populated intersection visualization and testing tool for V2X application development. arXiv preprint https://arxiv.org/abs/2306.00157 (2023). Accessed 1 Jun 2024 Gelbal,S.Y.: Cantas, M.R.: Guvenc, B.A.: Guvenc, L.: Virtual and real data populated intersection visualization and testing tool for V2X application development. arXiv preprint https://​arxiv.​org/​abs/​2306.​00157 (2023).  Accessed 1 Jun 2024
11.
Zurück zum Zitat Kara, P.A., Wippelhauser, A., Balogh, T., Bokor, L.: How I met your V2X sensor data: Analysis of projection-based light field visualization for vehicle-to-everything communication protocols and use cases. Sensors 23(3), 1284 (2023)CrossRef Kara, P.A., Wippelhauser, A., Balogh, T., Bokor, L.: How I met your V2X sensor data: Analysis of projection-based light field visualization for vehicle-to-everything communication protocols and use cases. Sensors 23(3), 1284 (2023)CrossRef
14.
Zurück zum Zitat Liu, H., Taniguchi, T., Tanaka, Y., Takenaka, K., Bando, T.: Visualization of driving behavior based on hidden feature extraction by using deep learning. IEEE Trans. Intell. Transp. Syst. 18(9), 2477–2489 (2017)CrossRef Liu, H., Taniguchi, T., Tanaka, Y., Takenaka, K., Bando, T.: Visualization of driving behavior based on hidden feature extraction by using deep learning. IEEE Trans. Intell. Transp. Syst. 18(9), 2477–2489 (2017)CrossRef
15.
Zurück zum Zitat Chen, S., Xue, Q., Zhao, X., Xing, Y., Lu, J.J.: Risky driving behavior recognition based on vehicle trajectory. Int. J. Environ. Res. Public Health 18(23), 12373 (2021)CrossRef Chen, S., Xue, Q., Zhao, X., Xing, Y., Lu, J.J.: Risky driving behavior recognition based on vehicle trajectory. Int. J. Environ. Res. Public Health 18(23), 12373 (2021)CrossRef
16.
Zurück zum Zitat Dai, Z., Pan, C., Xiong, W., Ding, R., Zhang, H., Xu, J.: Research on vehicle trajectory deviation characteristics on freeways using natural driving trajectory data. Int. J. Environ. Res. Public Health 19(22), 14695 (2022)CrossRef Dai, Z., Pan, C., Xiong, W., Ding, R., Zhang, H., Xu, J.: Research on vehicle trajectory deviation characteristics on freeways using natural driving trajectory data. Int. J. Environ. Res. Public Health 19(22), 14695 (2022)CrossRef
17.
Zurück zum Zitat Zhu, Y., Jiang, M., Yamamoto, T.: Analysis on the driving behavior of old drivers by driving recorder GPS trajectory data. Asian Transp. Stud. 8, 100063 (2022)CrossRef Zhu, Y., Jiang, M., Yamamoto, T.: Analysis on the driving behavior of old drivers by driving recorder GPS trajectory data. Asian Transp. Stud. 8, 100063 (2022)CrossRef
18.
20.
Zurück zum Zitat Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579 (2008) Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579 (2008)
22.
Zurück zum Zitat Mohammadnazar, A., Arvin, R., Khattak, A.J.: Classifying travelers’ driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning. Transp. Res. Part C: Emerg. Technol. 122, 102917 (2021)CrossRef Mohammadnazar, A., Arvin, R., Khattak, A.J.: Classifying travelers’ driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning. Transp. Res. Part C: Emerg. Technol. 122, 102917 (2021)CrossRef
23.
Zurück zum Zitat Shi, X., Wong, Y.D., Li, M.Z.F., Chai, C.: Key risk indicators for accident assessment conditioned on pre-crash vehicle trajectory. Accid. Anal. Prev. 117, 346–356 (2018)CrossRef Shi, X., Wong, Y.D., Li, M.Z.F., Chai, C.: Key risk indicators for accident assessment conditioned on pre-crash vehicle trajectory. Accid. Anal. Prev. 117, 346–356 (2018)CrossRef
24.
Zurück zum Zitat Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, M.: Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 149, 113240 (2020)CrossRef Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, M.: Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 149, 113240 (2020)CrossRef
25.
Zurück zum Zitat Noor-A-Rahim, M., et al.: 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. Proc. IEEE 110(6), 712–734 (2022)CrossRef Noor-A-Rahim, M., et al.: 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. Proc. IEEE 110(6), 712–734 (2022)CrossRef
27.
Zurück zum Zitat Fujiyoshi, H., Hirakawa, T., Yamashita, T.: Deep learning-based image recognition for autonomous driving. IATSS Res. 43(4), 244–252 (2019)CrossRef Fujiyoshi, H., Hirakawa, T., Yamashita, T.: Deep learning-based image recognition for autonomous driving. IATSS Res. 43(4), 244–252 (2019)CrossRef
28.
29.
Zurück zum Zitat Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E., Wang, F.-Y.: Driver activity recognition for intelligent vehicles: a deep learning approach. IEEE Trans. Veh. Technol. 68(6), 5379–5390 (2019)CrossRef Xing, Y., Lv, C., Wang, H., Cao, D., Velenis, E., Wang, F.-Y.: Driver activity recognition for intelligent vehicles: a deep learning approach. IEEE Trans. Veh. Technol. 68(6), 5379–5390 (2019)CrossRef
30.
31.
Zurück zum Zitat Miglani, A., Kumar, N.: Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges. Veh. Commun. 20, 100184 (2019) Miglani, A., Kumar, N.: Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges. Veh. Commun. 20, 100184 (2019)
32.
33.
Zurück zum Zitat Atakishiyev, S.: Salameh, M.: Yao,H.: Goebel, R.: Explainable artificial intelligence for autonomous driving: a comprehensive overview and field guide for future research directions. arXiv preprint arXiv:2112.11561 (2021). Accessed 1 Aug 2024 Atakishiyev, S.: Salameh, M.: Yao,H.: Goebel, R.: Explainable artificial intelligence for autonomous driving: a comprehensive overview and field guide for future research directions. arXiv preprint arXiv:​2112.​11561 (2021). Accessed 1 Aug 2024
34.
Zurück zum Zitat Alicioglu, G., Sun, B.: A survey of visual analytics for Explainable Artificial Intelligence methods. Comput. Graph. 102, 502–520 (2022)CrossRef Alicioglu, G., Sun, B.: A survey of visual analytics for Explainable Artificial Intelligence methods. Comput. Graph. 102, 502–520 (2022)CrossRef
35.
36.
Zurück zum Zitat Krause, J., Perer, A., Bertini, E.: INFUSE: interactive feature selection for predictive modeling of high dimensional data. IEEE Trans. Visual Comput. Graphics 20(12), 1614–1623 (2014)CrossRef Krause, J., Perer, A., Bertini, E.: INFUSE: interactive feature selection for predictive modeling of high dimensional data. IEEE Trans. Visual Comput. Graphics 20(12), 1614–1623 (2014)CrossRef
38.
Zurück zum Zitat Ali, S., et al.: Explainable artificial intelligence (XAI): What we know and what is left to attain trustworthy artificial intelligence. Information Fusion 99, 101805 (2023)CrossRef Ali, S., et al.: Explainable artificial intelligence (XAI): What we know and what is left to attain trustworthy artificial intelligence. Information Fusion 99, 101805 (2023)CrossRef
39.
Zurück zum Zitat Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning: an interrogative survey for the next frontiers. IEEE Trans. Visual Comput. Graphics 25(8), 2674–2693 (2018)CrossRef Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning: an interrogative survey for the next frontiers. IEEE Trans. Visual Comput. Graphics 25(8), 2674–2693 (2018)CrossRef
40.
Zurück zum Zitat Bachechi, C., Po, L., Rollo, F.: Big data analytics and visualization in traffic monitoring. Big Data Res. 27, 100292 (2022)CrossRef Bachechi, C., Po, L., Rollo, F.: Big data analytics and visualization in traffic monitoring. Big Data Res. 27, 100292 (2022)CrossRef
41.
Zurück zum Zitat Chen, W., Guo, F., Wang, F.-Y.: A survey of traffic data visualization. IEEE Trans. Intell. Transp. Syst. 16(6), 2970–2984 (2015)CrossRef Chen, W., Guo, F., Wang, F.-Y.: A survey of traffic data visualization. IEEE Trans. Intell. Transp. Syst. 16(6), 2970–2984 (2015)CrossRef
42.
Zurück zum Zitat Cazares, J.G., Damnjanovic, I.: Evaluating safety benefits of vehicle-to-everything sensor sharing on rural highways using the microscopic simulation model. Transp. Res. Rec. 2677(2), 924–943 (2023)CrossRef Cazares, J.G., Damnjanovic, I.: Evaluating safety benefits of vehicle-to-everything sensor sharing on rural highways using the microscopic simulation model. Transp. Res. Rec. 2677(2), 924–943 (2023)CrossRef
43.
Zurück zum Zitat Wang, R., Zhang, X., Xu, Z., Zhao, X., Li, X.: Research on performance and function testing of v2x in a closed test field. J. Adv. Transp. 2021, 1–18 (2021) Wang, R., Zhang, X., Xu, Z., Zhao, X., Li, X.: Research on performance and function testing of v2x in a closed test field. J. Adv. Transp. 2021, 1–18 (2021)
44.
Zurück zum Zitat Demir, M., Çavuşoğlu, A.: A new driver behavior model to create realistic urban traffic environment. Transport. Res. F: Traffic Psychol. Behav. 15(3), 289–296 (2012)CrossRef Demir, M., Çavuşoğlu, A.: A new driver behavior model to create realistic urban traffic environment. Transport. Res. F: Traffic Psychol. Behav. 15(3), 289–296 (2012)CrossRef
45.
46.
Zurück zum Zitat Kamrani, M., Arvin, R., Khattak, A.J.: Extracting useful information from basic safety message data: an empirical study of driving volatility measures and crash frequency at intersections. Transp. Res. Rec. 2672(38), 290–301 (2018)CrossRef Kamrani, M., Arvin, R., Khattak, A.J.: Extracting useful information from basic safety message data: an empirical study of driving volatility measures and crash frequency at intersections. Transp. Res. Rec. 2672(38), 290–301 (2018)CrossRef
49.
Zurück zum Zitat Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)CrossRef Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)CrossRef
50.
51.
Zurück zum Zitat da Silva, D.G., de Moura Meneses, A.A.: Comparing long short-term memory (LSTM) and bidirectional LSTM deep neural networks for power consumption prediction. Energy Rep. 10, 3315–3334 (2023)CrossRef da Silva, D.G., de Moura Meneses, A.A.: Comparing long short-term memory (LSTM) and bidirectional LSTM deep neural networks for power consumption prediction. Energy Rep. 10, 3315–3334 (2023)CrossRef
53.
Zurück zum Zitat Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)CrossRef Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)CrossRef
54.
Zurück zum Zitat Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)CrossRef Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)CrossRef
55.
Zurück zum Zitat Wang, W., Ramesh, A., Zhu, J., Li, J., Zhao, D.: Clustering of driving encounter scenarios using connected vehicle trajectories. IEEE Trans. Intell. Veh. 5(3), 485–496 (2020)CrossRef Wang, W., Ramesh, A., Zhu, J., Li, J., Zhao, D.: Clustering of driving encounter scenarios using connected vehicle trajectories. IEEE Trans. Intell. Veh. 5(3), 485–496 (2020)CrossRef
56.
Zurück zum Zitat José-García, A.: Gómez-Flores, W.: A survey of cluster validity indices for automatic data clustering using differential evolution. In proceedings of the genetic and evolutionary computation conference, pp. 314-322. ACM, Lille (2021). https://doi.org/10.1145/3449639.3459341 José-García, A.: Gómez-Flores, W.: A survey of cluster validity indices for automatic data clustering using differential evolution. In proceedings of the genetic and evolutionary computation conference, pp. 314-322. ACM, Lille (2021). https://​doi.​org/​10.​1145/​3449639.​3459341
57.
Zurück zum Zitat Öztürk, F.E., Demi̇rel, N.: Comparison of the methods to determine optimal number of cluster. Veri Bilimi 6(1), 34–45 (2023) Öztürk, F.E., Demi̇rel, N.: Comparison of the methods to determine optimal number of cluster. Veri Bilimi 6(1), 34–45 (2023)
58.
Zurück zum Zitat Wang, W., et al.: Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(6), 3567–3576 (2020)CrossRef Wang, W., et al.: Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(6), 3567–3576 (2020)CrossRef
60.
Zurück zum Zitat Jagannathan, P., Rajkumar, S., Frnda, J., Divakarachari, P.B., Subramani, P.: Moving vehicle detection and classification using gaussian mixture model and ensemble deep learning technique. Wirel. Commun. Mob. Comput. 2021, 1–15 (2021)CrossRef Jagannathan, P., Rajkumar, S., Frnda, J., Divakarachari, P.B., Subramani, P.: Moving vehicle detection and classification using gaussian mixture model and ensemble deep learning technique. Wirel. Commun. Mob. Comput. 2021, 1–15 (2021)CrossRef
61.
Zurück zum Zitat Choong, M.Y., Chin, R.K.Y., Yeo, K.B., Teo, K.T.K.: Trajectory pattern mining via clustering based on similarity function for transportation surveillance. Int. J. Simul.-Syst. Sci. Technol. 17(34), 19–21 (2016) Choong, M.Y., Chin, R.K.Y., Yeo, K.B., Teo, K.T.K.: Trajectory pattern mining via clustering based on similarity function for transportation surveillance. Int. J. Simul.-Syst. Sci. Technol. 17(34), 19–21 (2016)
62.
Zurück zum Zitat Rezaie, M.: Saunier, N.: Trajectory clustering performance evaluation: if we know the answer, it’s not clustering. (2021). arXiv: arXiv:2112.01570. [Online]. Available: http://arxiv.org/abs/2112.01570. Accessed 03 Jan 2024 Rezaie, M.: Saunier, N.: Trajectory clustering performance evaluation: if we know the answer, it’s not clustering. (2021). arXiv: arXiv:2112.01570. [Online]. Available: http://​arxiv.​org/​abs/​2112.​01570. Accessed 03 Jan 2024
63.
Zurück zum Zitat Zhang, M., Khattak, A.J.: Identifying and analyzing extreme lane change events using basic safety messages in a connected vehicle environment. In: Proceedings of the 97th annual meeting of the transportation research board (No. 18-04734). (2018) Zhang, M., Khattak, A.J.: Identifying and analyzing extreme lane change events using basic safety messages in a connected vehicle environment. In: Proceedings of the 97th annual meeting of the transportation research board (No. 18-04734). (2018)
64.
Zurück zum Zitat Lozano Dominguez, J.M., Mateo Sanguino, T.J.: Review on v2x, i2x, and p2x communications and their applications: a comprehensive analysis over time. Sensors 19(12), 2756 (2019)CrossRef Lozano Dominguez, J.M., Mateo Sanguino, T.J.: Review on v2x, i2x, and p2x communications and their applications: a comprehensive analysis over time. Sensors 19(12), 2756 (2019)CrossRef
65.
Zurück zum Zitat Sun, S., Hu, J., Peng, Y., Pan, X., Zhao, L., Fang, J.: Support for vehicle-to-everything services based on LTE. IEEE Wirel. Commun. 23(3), 4–8 (2016)CrossRef Sun, S., Hu, J., Peng, Y., Pan, X., Zhao, L., Fang, J.: Support for vehicle-to-everything services based on LTE. IEEE Wirel. Commun. 23(3), 4–8 (2016)CrossRef
67.
Zurück zum Zitat Xun, Y., Liu, J., Kato, N., Fang, Y., Zhang, Y.: Automobile driver fingerprinting: A new machine learning based authentication scheme. IEEE Trans. Industr. Inf. 16(2), 1417–1426 (2019)CrossRef Xun, Y., Liu, J., Kato, N., Fang, Y., Zhang, Y.: Automobile driver fingerprinting: A new machine learning based authentication scheme. IEEE Trans. Industr. Inf. 16(2), 1417–1426 (2019)CrossRef
68.
Zurück zum Zitat Zhou, D., Liu, H., Ma, H., Wang, X., Zhang, X., Dong, Y.: Driving behavior prediction considering cognitive prior and driving context. IEEE Trans. Intell. Transp. Syst. 22(5), 2669–2678 (2020)CrossRef Zhou, D., Liu, H., Ma, H., Wang, X., Zhang, X., Dong, Y.: Driving behavior prediction considering cognitive prior and driving context. IEEE Trans. Intell. Transp. Syst. 22(5), 2669–2678 (2020)CrossRef
69.
Zurück zum Zitat Al-Yarimi, F.A.: Enhancing road safety through advanced predictive analytics in V2X communication networks. Comput. Electr. Eng. 115, 109134 (2024)CrossRef Al-Yarimi, F.A.: Enhancing road safety through advanced predictive analytics in V2X communication networks. Comput. Electr. Eng. 115, 109134 (2024)CrossRef
Metadaten
Titel
Coupling Machine Learning and Visualization Approaches to Individual- and Road-level Driving Behavior Analysis in a V2X Environment
verfasst von
Xuantong Wang
Jing Li
Theo Canji
Tong Zhang
Publikationsdatum
04.12.2024
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00445-w

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.