Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2017

19.12.2016

Covering arrays from m-sequences and character sums

verfasst von: Georgios Tzanakis, Lucia Moura, Daniel Panario, Brett Stevens

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A covering array of strength t on v symbols is an array with the property that, for every t-set of column vectors, every one of the \(v^t\) possible t-tuples of symbols appears as a row at least once in the sub-array defined by these column vectors. Arrays constructed using m-sequences over a finite field possess many combinatorial properties and have been used to construct various combinatorial objects; see the recent survey Moura et al. (Des Codes Cryptogr 78(1):197–219, 2016). In this paper we construct covering arrays whose elements are the remainder of the division by some integer of the discrete logarithm applied to selected m-sequence elements. Inspired by the work of Colbourn (Des Codes Cryptogr 55(2–3):201–219, 2010), we prove our results by connecting the covering array property to a character sum, and we evaluate this sum by taking advantage of the balanced way in which the m-sequence elements are distributed. Our results include new infinite families of covering arrays of arbitrary strength.
Literatur
2.
Zurück zum Zitat Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (2016).MATH Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (2016).MATH
3.
Zurück zum Zitat Bose R.C.: Mathematical theory of the symmetrical factorial design. Sankhya 8, 107–166 (1947).MathSciNetMATH Bose R.C.: Mathematical theory of the symmetrical factorial design. Sankhya 8, 107–166 (1947).MathSciNetMATH
4.
Zurück zum Zitat Bryce R.C., Colbourn C.J.: A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 19(1), 37–53 (2009).CrossRef Bryce R.C., Colbourn C.J.: A density-based greedy algorithm for higher strength covering arrays. Softw. Test. Verif. Reliab. 19(1), 37–53 (2009).CrossRef
5.
Zurück zum Zitat Cohen D.M., Siddhartha R.D., Parelius J., Patton G.C.: The combinatorial design approach to automatic test generation. IEEE Softw. 13(5), 83 (1996).CrossRef Cohen D.M., Siddhartha R.D., Parelius J., Patton G.C.: The combinatorial design approach to automatic test generation. IEEE Softw. 13(5), 83 (1996).CrossRef
6.
Zurück zum Zitat Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004).MATH Colbourn C.J.: Combinatorial aspects of covering arrays. Le Matematiche (Catania) 58, 121–167 (2004).MATH
8.
Zurück zum Zitat Colbourn C.J., Dinitz J.H.: CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2010).MATH Colbourn C.J., Dinitz J.H.: CRC Handbook of Combinatorial Designs. CRC Press, Boca Raton (2010).MATH
11.
Zurück zum Zitat Dewar M., Moura L., Panario D., Stevens B., Wang Q.: Division of trinomials by pentanomials and orthogonal arrays. Des. Codes Cryptogr. 45(1), 1–17 (2007).MathSciNetCrossRefMATH Dewar M., Moura L., Panario D., Stevens B., Wang Q.: Division of trinomials by pentanomials and orthogonal arrays. Des. Codes Cryptogr. 45(1), 1–17 (2007).MathSciNetCrossRefMATH
14.
Zurück zum Zitat Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).CrossRefMATH Golomb S.W., Gong G.: Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar. Cambridge University Press, Cambridge (2005).CrossRefMATH
15.
Zurück zum Zitat Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays: Theory and Applications. Springer, New York (2012).MATH Hedayat A.S., Sloane N.J.A., Stufken J.: Orthogonal Arrays: Theory and Applications. Springer, New York (2012).MATH
16.
Zurück zum Zitat Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Finite Geometries, pp. 201–246. Springer, New York (2001). Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces: update 2001. In: Finite Geometries, pp. 201–246. Springer, New York (2001).
17.
Zurück zum Zitat Katona G.O.H.: Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. Hung. 3(1–2), 19–26 (1973).MathSciNetCrossRefMATH Katona G.O.H.: Two applications (for search theory and truth functions) of Sperner type theorems. Period. Math. Hung. 3(1–2), 19–26 (1973).MathSciNetCrossRefMATH
20.
Zurück zum Zitat Kuhn D.R., Wallace D.R., Gallo Jr. A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004).CrossRef Kuhn D.R., Wallace D.R., Gallo Jr. A.M.: Software fault interactions and implications for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004).CrossRef
21.
Zurück zum Zitat Lidl R., Niederreiter H.: Finite Fields, vol. 20. Cambridge University Press, Cambridge (1997).MATH Lidl R., Niederreiter H.: Finite Fields, vol. 20. Cambridge University Press, Cambridge (1997).MATH
22.
Zurück zum Zitat Moura L., Mullen G.L., Panario D.: Finite field constructions of combinatorial arrays. Des. Codes Cryptogr. 78(1), 197–219 (2016).MathSciNetCrossRefMATH Moura L., Mullen G.L., Panario D.: Finite field constructions of combinatorial arrays. Des. Codes Cryptogr. 78(1), 197–219 (2016).MathSciNetCrossRefMATH
23.
24.
Zurück zum Zitat Munemasa A.: Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Appl. 4(3), 252–260 (1998).MathSciNetCrossRefMATH Munemasa A.: Orthogonal arrays, primitive trinomials, and shift-register sequences. Finite Fields Appl. 4(3), 252–260 (1998).MathSciNetCrossRefMATH
25.
Zurück zum Zitat Panario D., Sosnovski O., Stevens B., Wang Q.: Divisibility of polynomials over finite fields and combinatorial applications. Des. Codes Cryptogr. 63(3), 425–445 (2012).MathSciNetCrossRefMATH Panario D., Sosnovski O., Stevens B., Wang Q.: Divisibility of polynomials over finite fields and combinatorial applications. Des. Codes Cryptogr. 63(3), 425–445 (2012).MathSciNetCrossRefMATH
26.
Zurück zum Zitat Qvist B.: Some remarks concerning curves of the second degree in a finite plane. Suomalainen Tiedeakatemia 134, 1–27 (1952).MathSciNetMATH Qvist B.: Some remarks concerning curves of the second degree in a finite plane. Suomalainen Tiedeakatemia 134, 1–27 (1952).MathSciNetMATH
27.
Zurück zum Zitat Raaphorst S., Moura L., Stevens B.: A construction for strength-3 covering arrays from linear feedback shift register sequences. Des. Codes Cryptogr. 73(3), 949–968 (2014).MathSciNetCrossRefMATH Raaphorst S., Moura L., Stevens B.: A construction for strength-3 covering arrays from linear feedback shift register sequences. Des. Codes Cryptogr. 73(3), 949–968 (2014).MathSciNetCrossRefMATH
28.
Zurück zum Zitat Rényi A.: Foundations of Probability. Wiley, New York (1971).MATH Rényi A.: Foundations of Probability. Wiley, New York (1971).MATH
29.
Zurück zum Zitat Stein W.A., Abbott T., Abshoff M.: Sage mathematics software (2011). Stein W.A., Abbott T., Abshoff M.: Sage mathematics software (2011).
30.
31.
Zurück zum Zitat Tzanakis G., Moura L., Panario D., Stevens B.: Constructing new covering arrays from LFSR sequences over finite fields. Discret. Math. 339(3), 1158–1171 (2016).MathSciNetCrossRefMATH Tzanakis G., Moura L., Panario D., Stevens B.: Constructing new covering arrays from LFSR sequences over finite fields. Discret. Math. 339(3), 1158–1171 (2016).MathSciNetCrossRefMATH
Metadaten
Titel
Covering arrays from m-sequences and character sums
verfasst von
Georgios Tzanakis
Lucia Moura
Daniel Panario
Brett Stevens
Publikationsdatum
19.12.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2017
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0316-2

Weitere Artikel der Ausgabe 3/2017

Designs, Codes and Cryptography 3/2017 Zur Ausgabe