Skip to main content
Erschienen in:

11.12.2023

COVID-19Net: An Effective and Robust Approach for Covid-19 Detection Using Ensemble of ConvNet-24 and Customized Pre-trained Models

verfasst von: Poonguzhali Elangovan, D. Vijayalakshmi, Malaya Kumar Nath

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Coronavirus is extremely harmful to human lungs, and hence early detection is critical to prevent the virus from spreading. However, the cumulative workflow in the routine diagnostic approach is challenging. Although chest radiographic image analysis is found to be a good alternative screening method, manual examination of abnormalities in those images requires a skilled expert. Moreover, it is a time-consuming process. The recent advancements in deep learning techniques makes them as a promising choice for the development of sophisticated applications that can meet clinical accuracy requirements. Motivated by this, a novel ConvNet-24 is proposed for efficacious classification of Covid-19 from X-ray images. Furthermore, several state-of-the-art pre-trained models (such as Alexnet, Densenet-201, Mobilenet-v2, Googlenet, Squeezenet, Inception-v3, Resnet-18, NasnetMobile, Resnet-50, Darknet-19, Resnet-101, Darknet-53, and Xception) are tailored using transfer learning technique. A novel ensemble model is proposed by investigating the models in 126 configurations, thereby improving the overall performance. Experimental findings reveal that aggregating the best models results in an overall classification accuracy of 98.5%, outperforming state-of-the-art techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (covid-19) in China: a report of 1014 cases. Radiology 296(2), 32–40 (2020)CrossRef T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (covid-19) in China: a report of 1014 cases. Radiology 296(2), 32–40 (2020)CrossRef
2.
Zurück zum Zitat A. Badawi, K. Elgazzar, Detecting coronavirus from x-rays using transfer learning. COVID 1(1), 403–415 (2021)CrossRef A. Badawi, K. Elgazzar, Detecting coronavirus from x-rays using transfer learning. COVID 1(1), 403–415 (2021)CrossRef
3.
Zurück zum Zitat S. Balasubramaniam, K.S. Kumar, Optimal ensemble learning model for covid-19 detection using chest x-ray images. Biomed. Signal Process. Control 81(104392), 1–16 (2023) S. Balasubramaniam, K.S. Kumar, Optimal ensemble learning model for covid-19 detection using chest x-ray images. Biomed. Signal Process. Control 81(104392), 1–16 (2023)
4.
Zurück zum Zitat S.A. Bustin, Absolute quantifcation of MRNA using realtime reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25(2), 169–193 (2000)PubMedCrossRef S.A. Bustin, Absolute quantifcation of MRNA using realtime reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25(2), 169–193 (2000)PubMedCrossRef
5.
Zurück zum Zitat Coronavirus disease 2019 (COVID-19): situation report, vol 51 (World Health Organization, 2020), pp. 1–9 Coronavirus disease 2019 (COVID-19): situation report, vol 51 (World Health Organization, 2020), pp. 1–9
6.
Zurück zum Zitat A. Chattopadhyay, M. Maitra, MRI-based brain tumour image detection using CNN based deep learning method. Neurosci. Inf. 2(4), 1–6 (2022) A. Chattopadhyay, M. Maitra, MRI-based brain tumour image detection using CNN based deep learning method. Neurosci. Inf. 2(4), 1–6 (2022)
7.
Zurück zum Zitat F. Chollet, Xception: deep learning with depthwise separable convolutions, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 1800–1807 F. Chollet, Xception: deep learning with depthwise separable convolutions, in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 1800–1807
8.
Zurück zum Zitat A.K. Das, S. Ghosh, S. Thunder, R. Dutta, S. Agarwal, A. Chakrabarti, Automatic covid-19 detection from x-ray images using ensemble learning with convolutional neural network. Pattern Anal. Appl. 24, 1111–1124 (2021)CrossRef A.K. Das, S. Ghosh, S. Thunder, R. Dutta, S. Agarwal, A. Chakrabarti, Automatic covid-19 detection from x-ray images using ensemble learning with convolutional neural network. Pattern Anal. Appl. 24, 1111–1124 (2021)CrossRef
9.
Zurück zum Zitat P. Elangovan, M.K. Nath, A review: person identification using retinal fundus images. Int. J. Electron. Telecommun. 65(4), 585–596 (2019)CrossRef P. Elangovan, M.K. Nath, A review: person identification using retinal fundus images. Int. J. Electron. Telecommun. 65(4), 585–596 (2019)CrossRef
10.
Zurück zum Zitat P. Elangovan, M.K. Nath, Glaucoma assessment from color fundus images using convolutional neural network. Int. J. Imaging Syst. Technol. 31(2), 955–971 (2020)CrossRef P. Elangovan, M.K. Nath, Glaucoma assessment from color fundus images using convolutional neural network. Int. J. Imaging Syst. Technol. 31(2), 955–971 (2020)CrossRef
11.
Zurück zum Zitat P. Elangovan, M.K. Nath, A novel shallow convnet-18 for malaria parasite detection in thin blood smear images. SN Comput. Sci. 2(380), 1–11 (2021) P. Elangovan, M.K. Nath, A novel shallow convnet-18 for malaria parasite detection in thin blood smear images. SN Comput. Sci. 2(380), 1–11 (2021)
12.
Zurück zum Zitat P. Elangovan, M.K. Nath, Performance analysis of optimizers for glaucoma diagnosis from fundus images using transfer learning, in Lecture Notes in Electrical Engineering, vol 749 (Springer, Singapore, 2021), pp. 507–518 P. Elangovan, M.K. Nath, Performance analysis of optimizers for glaucoma diagnosis from fundus images using transfer learning, in Lecture Notes in Electrical Engineering, vol 749 (Springer, Singapore, 2021), pp. 507–518
13.
Zurück zum Zitat P. Elangovan, M.K. Nath, EN-convnet: a novel approach for glaucoma detection from color fundus images using ensemble of deep convolutional neural networks. Int. J. Imaging Syst. Technol. 32(6), 2034–2048 (2022)CrossRef P. Elangovan, M.K. Nath, EN-convnet: a novel approach for glaucoma detection from color fundus images using ensemble of deep convolutional neural networks. Int. J. Imaging Syst. Technol. 32(6), 2034–2048 (2022)CrossRef
14.
Zurück zum Zitat P. Elangovan, M.K. Nath, M. Mishra, Statistical parameters for glaucoma detection from color fundus images. Proc. Comput. Sci. 171, 2675–2683 (2020)CrossRef P. Elangovan, M.K. Nath, M. Mishra, Statistical parameters for glaucoma detection from color fundus images. Proc. Comput. Sci. 171, 2675–2683 (2020)CrossRef
15.
Zurück zum Zitat P. Elangovan, D. Vijayalakshmi, M.K. Nath, Detection of glaucoma from fundus image using pre-trained densenet201 model. Indian J. Radio Space Phys. 50(1), 33–39 (2021) P. Elangovan, D. Vijayalakshmi, M.K. Nath, Detection of glaucoma from fundus image using pre-trained densenet201 model. Indian J. Radio Space Phys. 50(1), 33–39 (2021)
16.
Zurück zum Zitat S.A. Gafoor, N. Sampathila, M. Madhushankara, K.S. Swathi, Deep learning model for detection of covid-19 utilizing the chest x-ray images. Cogent Eng. 9(1), 207–221 (2022) S.A. Gafoor, N. Sampathila, M. Madhushankara, K.S. Swathi, Deep learning model for detection of covid-19 utilizing the chest x-ray images. Cogent Eng. 9(1), 207–221 (2022)
17.
Zurück zum Zitat P. Gifani, A. Shalbaf, M. Vafaeezadeh, Automated detection of covid-19 using ensemble of transfer learning with deep convolutional neural network based on ct scans. Int. J. Comput. Assist. Radiol. Surg. 16, 115–123 (2021)PubMedCrossRef P. Gifani, A. Shalbaf, M. Vafaeezadeh, Automated detection of covid-19 using ensemble of transfer learning with deep convolutional neural network based on ct scans. Int. J. Comput. Assist. Radiol. Surg. 16, 115–123 (2021)PubMedCrossRef
18.
Zurück zum Zitat G. Guven, C. Ince, A. Topeli, K. Caliskan, Cardio-pulmonary-renal consequences of severe covid-19. Cardiorenal Med. 11(3), 133–139 (2021)PubMedCrossRef G. Guven, C. Ince, A. Topeli, K. Caliskan, Cardio-pulmonary-renal consequences of severe covid-19. Cardiorenal Med. 11(3), 133–139 (2021)PubMedCrossRef
19.
Zurück zum Zitat K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, 2016), pp. 770–778 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, Las Vegas, 2016), pp. 770–778
20.
Zurück zum Zitat T.K.K. Ho, J. Gwak, Feature-level ensemble approach for covid-19 detection using chest x-ray images. PLoS ONE 17(7), 1–19 (2022)CrossRef T.K.K. Ho, J. Gwak, Feature-level ensemble approach for covid-19 detection using chest x-ray images. PLoS ONE 17(7), 1–19 (2022)CrossRef
21.
Zurück zum Zitat J. Hou, T. Gao, Explainable DCNN based chest x-ray image analysis and classification for covid-19 pneumonia detection. Sci. Rep. 11(16071), 1–15 (2021) J. Hou, T. Gao, Explainable DCNN based chest x-ray image analysis and classification for covid-19 pneumonia detection. Sci. Rep. 11(16071), 1–15 (2021)
23.
Zurück zum Zitat F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)1 mb model size (2016). CoRR arXiv:1602.07360 F.N. Iandola, M.W. Moskewicz, K. Ashraf, S. Han, W.J. Dally, K. Keutzer, Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)1 mb model size (2016). CoRR arXiv:​1602.​07360
24.
Zurück zum Zitat A. Ismael, A. Sengur, Deep learning approaches for covid-19 detection based on chest x-ray images. Expert Syst. Appl. 164(114054), 1–11 (2021) A. Ismael, A. Sengur, Deep learning approaches for covid-19 detection based on chest x-ray images. Expert Syst. Appl. 164(114054), 1–11 (2021)
25.
Zurück zum Zitat A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25(2), 1097–1105 (2012) A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks. Neural Inf. Process. Syst. 25(2), 1097–1105 (2012)
27.
Zurück zum Zitat A. Makris, I. Kontopoulos, K. Tserpes, Covid-19 detection from chest x-ray images using deep learning and convolutional neural networks, in 11th Hellenic Conference on Artificial Intelligence (2020), pp. 1–14 A. Makris, I. Kontopoulos, K. Tserpes, Covid-19 detection from chest x-ray images using deep learning and convolutional neural networks, in 11th Hellenic Conference on Artificial Intelligence (2020), pp. 1–14
28.
Zurück zum Zitat J. Manokaran, F. Zabihollahy, A. Hamilton-Wright, E. Ukwatta, Detection of covid-19 from chest x-ray images using transfer learning. J. Med. Imaging 8(1), 427–436 (2021) J. Manokaran, F. Zabihollahy, A. Hamilton-Wright, E. Ukwatta, Detection of covid-19 from chest x-ray images using transfer learning. J. Med. Imaging 8(1), 427–436 (2021)
29.
Zurück zum Zitat A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl. 24(3), 1207–1220 (2021)PubMedPubMedCentralCrossRef A. Narin, C. Kaya, Z. Pamuk, Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl. 24(3), 1207–1220 (2021)PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat M.K. Nath, A. Kanhe, M. Mishra, A novel deep learning approach for classification of covid-19 images, in 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA) (2020), pp. 752–757 M.K. Nath, A. Kanhe, M. Mishra, A novel deep learning approach for classification of covid-19 images, in 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA) (2020), pp. 752–757
32.
Zurück zum Zitat T. Ozturk, M. Talo, E.A. Yildirim, U.B. Baloglu, O. Yildirim, U.R. Acharya, Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput. Biol. Med. 121(103792), 1–11 (2020) T. Ozturk, M. Talo, E.A. Yildirim, U.B. Baloglu, O. Yildirim, U.R. Acharya, Automated detection of covid-19 cases using deep neural networks with x-ray images. Comput. Biol. Med. 121(103792), 1–11 (2020)
33.
Zurück zum Zitat M. Rahimzadeha, A. Attar, A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2. Inf. Med. Unlocked 19(100360), 1–9 (2020) M. Rahimzadeha, A. Attar, A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2. Inf. Med. Unlocked 19(100360), 1–9 (2020)
34.
Zurück zum Zitat G. Ravichandran, P. Elangovan, M.K. Nath, Diagnosis of retinitis pigmentosa from retinal images. Int. J. Electron. Telecommun. 65(3), 519–525 (2019)CrossRef G. Ravichandran, P. Elangovan, M.K. Nath, Diagnosis of retinitis pigmentosa from retinal images. Int. J. Electron. Telecommun. 65(3), 519–525 (2019)CrossRef
36.
Zurück zum Zitat A.A. Reshi, F. Rustam, A. Mehmood, A. Alhossan, Z. Alrabiah, A. Ahmad, H. Alsuwailem, G.S. Choi, An efficient cnn model for covid-19 disease detection based on x-ray image classification. in Complexity and Robustness Trade-Off for Traditional and Deep Models (2021), pp. 1–12. https://doi.org/10.1155/2021/6621607 A.A. Reshi, F. Rustam, A. Mehmood, A. Alhossan, Z. Alrabiah, A. Ahmad, H. Alsuwailem, G.S. Choi, An efficient cnn model for covid-19 disease detection based on x-ray image classification. in Complexity and Robustness Trade-Off for Traditional and Deep Models (2021), pp. 1–12. https://​doi.​org/​10.​1155/​2021/​6621607
37.
Zurück zum Zitat P. Saha, M.S. Sadi, M.M. Islam, Emcnet: automated covid-19 diagnosis from x-ray images using convolutional neural network and ensemble of machine learning classifiers. Inf. Med. Unlocked 22(100505), 1–12 (2021) P. Saha, M.S. Sadi, M.M. Islam, Emcnet: automated covid-19 diagnosis from x-ray images using convolutional neural network and ensemble of machine learning classifiers. Inf. Med. Unlocked 22(100505), 1–12 (2021)
38.
Zurück zum Zitat M. Sandler, A.G. Howard, M. Zhu, A. Zhmoginov, L. Chen, Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation (2018), pp. 1–14. CoRR arXiv:1801.04381 M. Sandler, A.G. Howard, M. Zhu, A. Zhmoginov, L. Chen, Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation (2018), pp. 1–14. CoRR arXiv:​1801.​04381
39.
Zurück zum Zitat R. Sarki, K. Ahmed, H. Wang, Y. Zhang, K. Wang, Automated detection of covid-19 through convolutional neural network using chest x-ray images. PLoS ONE 17(1), 1–17 (2022)CrossRef R. Sarki, K. Ahmed, H. Wang, Y. Zhang, K. Wang, Automated detection of covid-19 through convolutional neural network using chest x-ray images. PLoS ONE 17(1), 1–17 (2022)CrossRef
40.
Zurück zum Zitat F.M. Shah, S.K.S. Joy, F. Ahmed, T. Hossain, M. Humaira, A.S. Ami, S. Paul, M.A.R.K. Jim, S. Ahmed, A comprehensive survey of covid-19 detection using medical images. SN Comput. Sci. 2(434), 1–22 (2021) F.M. Shah, S.K.S. Joy, F. Ahmed, T. Hossain, M. Humaira, A.S. Ami, S. Paul, M.A.R.K. Jim, S. Ahmed, A comprehensive survey of covid-19 detection using medical images. SN Comput. Sci. 2(434), 1–22 (2021)
41.
Zurück zum Zitat K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in International Conference on Learning Representations (2014), pp. 1–14 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in International Conference on Learning Representations (2014), pp. 1–14
42.
Zurück zum Zitat X. Song, P. Sun, S. Song, V. Stojanovic, Event-driven NN adaptive fixed-time control for nonlinear systems with guaranteed performance. J. Franklin Inst. 359(9), 4138–4159 (2022)MathSciNetCrossRef X. Song, P. Sun, S. Song, V. Stojanovic, Event-driven NN adaptive fixed-time control for nonlinear systems with guaranteed performance. J. Franklin Inst. 359(9), 4138–4159 (2022)MathSciNetCrossRef
45.
46.
Zurück zum Zitat V. Venugopal, J. Joseph, M.V. Das, M.K. Nath, An efficientnet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and nevi skin lesions. Comput. Methods Programs Biomed. 222, 106935 (2022)PubMedCrossRef V. Venugopal, J. Joseph, M.V. Das, M.K. Nath, An efficientnet-based modified sigmoid transform for enhancing dermatological macro-images of melanoma and nevi skin lesions. Comput. Methods Programs Biomed. 222, 106935 (2022)PubMedCrossRef
47.
Zurück zum Zitat D. Vijayalakshmi, M.K. Nath, M. Mishra, Novel pre-processing stage for classification of CT scan covid-19 images, in 18th International Conference on Signal Processing and Multimedia Applications (SIGMAP, 2021), pp. 87–94 D. Vijayalakshmi, M.K. Nath, M. Mishra, Novel pre-processing stage for classification of CT scan covid-19 images, in 18th International Conference on Signal Processing and Multimedia Applications (SIGMAP, 2021), pp. 87–94
48.
Zurück zum Zitat L. Visuna, D. Yang, J.G. Blas, J. Carretero, Computer-aided diagnostic for classifying chest x-ray images using deep ensemble learning. BMC Med. Imaging 22(178), 1–16 (2022) L. Visuna, D. Yang, J.G. Blas, J. Carretero, Computer-aided diagnostic for classifying chest x-ray images using deep ensemble learning. BMC Med. Imaging 22(178), 1–16 (2022)
49.
Zurück zum Zitat T. Wei, X. Li, V. Stojanovic, Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn. 103(9), 1733–1755 (2021)CrossRef T. Wei, X. Li, V. Stojanovic, Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays. Nonlinear Dyn. 103(9), 1733–1755 (2021)CrossRef
51.
Zurück zum Zitat S. Yang, B.L. Barranco, B. Chen, Heterogeneous ensemble-based spike-driven few-shot online learning. Front. Neurosci. 16(850932), 1–15 (2022) S. Yang, B.L. Barranco, B. Chen, Heterogeneous ensemble-based spike-driven few-shot online learning. Front. Neurosci. 16(850932), 1–15 (2022)
53.
Zurück zum Zitat S. Yang, T. Gao, J. Wang, B. Deng, M.R. Azghadi, T. Lei, B.L. Barranco, Sam: a unified self-adaptive multicompartmental spiking neuron model for learning with working memory. Front. Neurosci. 16(16850945), 1–22 (2022) S. Yang, T. Gao, J. Wang, B. Deng, M.R. Azghadi, T. Lei, B.L. Barranco, Sam: a unified self-adaptive multicompartmental spiking neuron model for learning with working memory. Front. Neurosci. 16(16850945), 1–22 (2022)
54.
Zurück zum Zitat S. Yang, J. Tan, B. Chen, Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion. Entropy 24(4), 1–17 (2022)MathSciNetCrossRef S. Yang, J. Tan, B. Chen, Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion. Entropy 24(4), 1–17 (2022)MathSciNetCrossRef
55.
Zurück zum Zitat S. Yang, J. Wang, B. Deng, M.R. Azghadi, B.L. Barranco, Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 7126–7140 (2022)PubMedCrossRef S. Yang, J. Wang, B. Deng, M.R. Azghadi, B.L. Barranco, Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 7126–7140 (2022)PubMedCrossRef
Metadaten
Titel
COVID-19Net: An Effective and Robust Approach for Covid-19 Detection Using Ensemble of ConvNet-24 and Customized Pre-trained Models
verfasst von
Poonguzhali Elangovan
D. Vijayalakshmi
Malaya Kumar Nath
Publikationsdatum
11.12.2023
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 4/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-023-02564-3