Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 9/2015

01.09.2015 | Original Article

CPU–GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL

verfasst von: Shiyu Jia, Weizhong Zhang, Xiaokang Yu, Zhenkuan Pan

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability.

Methods

A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL.

Results

Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed.

Conclusions

Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU–CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100–200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU–GPU data transfer. Future work needs to improve on these areas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zerbato D, Baschirotto D, Baschirotto D, Botturi D, Fiorini P (2011) GPU-based physical cut in interactive haptic simulations. Int J Comput Assist Radiol Surg 6(2):265–272CrossRefPubMed Zerbato D, Baschirotto D, Baschirotto D, Botturi D, Fiorini P (2011) GPU-based physical cut in interactive haptic simulations. Int J Comput Assist Radiol Surg 6(2):265–272CrossRefPubMed
2.
Zurück zum Zitat Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgical simulation. IEEE Trans Vis Comput Graph 5(1):62–73CrossRef Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgical simulation. IEEE Trans Vis Comput Graph 5(1):62–73CrossRef
3.
Zurück zum Zitat Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real time cutting, deformations and force-feedback for surgery training and simulation. Vis Comput 16(8):437–452CrossRef Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model allowing real time cutting, deformations and force-feedback for surgery training and simulation. Vis Comput 16(8):437–452CrossRef
4.
Zurück zum Zitat Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 49–54 Müller M, Dorsey J, McMillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 49–54
5.
Zurück zum Zitat Müller M, Hennix BHM, Ratcliff J (2006) Position based dynamics. In: Proceedings of virtual reality interactions and physical simulations, pp 71–80 Müller M, Hennix BHM, Ratcliff J (2006) Position based dynamics. In: Proceedings of virtual reality interactions and physical simulations, pp 71–80
6.
Zurück zum Zitat Bender J, Koschier D, Charrier P, Weber D (2014) Position-based simulation of continuous materials. Comput Graph 44:1–10CrossRef Bender J, Koschier D, Charrier P, Weber D (2014) Position-based simulation of continuous materials. Comput Graph 44:1–10CrossRef
7.
Zurück zum Zitat Becker M, Ihmsen M, Teschner M (2009) Corotated SPH for deformable solids. In: Proceedings of the fifth eurographics conference on natural phenomena, pp 27–34 Becker M, Ihmsen M, Teschner M (2009) Corotated SPH for deformable solids. In: Proceedings of the fifth eurographics conference on natural phenomena, pp 27–34
8.
Zurück zum Zitat Steinemann D, Otaduy MA, Gross M (2009) Splitting meshless deforming objects with explicit surface tracking. Graph Models 71(6):209–220CrossRef Steinemann D, Otaduy MA, Gross M (2009) Splitting meshless deforming objects with explicit surface tracking. Graph Models 71(6):209–220CrossRef
9.
Zurück zum Zitat Pietroni N, Ganovelli F, Cignoni P, Scopigno R (2009) Splitting cubes—a fast and robust technique for virtual cutting. Vis Comput 25(3):227–239CrossRef Pietroni N, Ganovelli F, Cignoni P, Scopigno R (2009) Splitting cubes—a fast and robust technique for virtual cutting. Vis Comput 25(3):227–239CrossRef
10.
Zurück zum Zitat Taylor ZA, Comas O, Cheng M, Passenger J, Hawkes DJ, Atkinson D, Ourselin S (2009) On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Med Image Anal 13(2):234–244CrossRefPubMed Taylor ZA, Comas O, Cheng M, Passenger J, Hawkes DJ, Atkinson D, Ourselin S (2009) On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Med Image Anal 13(2):234–244CrossRefPubMed
11.
Zurück zum Zitat Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU—application to neurosurgical simulation. Comput Methods Appl Mech Eng 199(49–52):3305–3314PubMedCentralCrossRefPubMed Joldes GR, Wittek A, Miller K (2010) Real-time nonlinear finite element computations on GPU—application to neurosurgical simulation. Comput Methods Appl Mech Eng 199(49–52):3305–3314PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19(2):801–816CrossRef Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19(2):801–816CrossRef
13.
Zurück zum Zitat LeBlanc S, Boyer P, Joslin C (2014) Modelling and animation of impact and damage with smoothed particle hydrodynamics. Vis Comput 30(6–8):909–917CrossRef LeBlanc S, Boyer P, Joslin C (2014) Modelling and animation of impact and damage with smoothed particle hydrodynamics. Vis Comput 30(6–8):909–917CrossRef
14.
Zurück zum Zitat Wu J, Westermann R, Dick C (2014) Physically-based simulation of cuts in deformable bodies: a survey. Eurographics 2014 State-of-the-Art Report, pp 1–19 Wu J, Westermann R, Dick C (2014) Physically-based simulation of cuts in deformable bodies: a survey. Eurographics 2014 State-of-the-Art Report, pp 1–19
15.
Zurück zum Zitat Bielser D, Maiwald VA, Gross MH (1999) Interactive cuts through 3-dimensional soft tissue. Comput Graph Forum 18(3):31–38CrossRef Bielser D, Maiwald VA, Gross MH (1999) Interactive cuts through 3-dimensional soft tissue. Comput Graph Forum 18(3):31–38CrossRef
16.
Zurück zum Zitat Bielser D, Gross MH (2000) Interactive simulation of surgical cuts. In: Proceedings of pacific graphics, pp 116–125 Bielser D, Gross MH (2000) Interactive simulation of surgical cuts. In: Proceedings of pacific graphics, pp 116–125
17.
Zurück zum Zitat Mor AB (2001) Progressive cutting with minimal new element creation of soft tissue models for interactive surgical simulation. Doctoral dissertation. Robotics Institute, Carnegie Mellon University Mor AB (2001) Progressive cutting with minimal new element creation of soft tissue models for interactive surgical simulation. Doctoral dissertation. Robotics Institute, Carnegie Mellon University
18.
Zurück zum Zitat Steinemann D, Harders M, Gross M, Szekely G (2006) Hybrid cutting of deformable solids. In: Proceedings of IEEE conference on virtual reality, pp 35–42 Steinemann D, Harders M, Gross M, Szekely G (2006) Hybrid cutting of deformable solids. In: Proceedings of IEEE conference on virtual reality, pp 35–42
19.
Zurück zum Zitat Bielser D, Glardon P, Teschner M, Gross M (2004) A state machine for real-time cutting of tetrahedral meshes. Graph Models 66(6):398–417CrossRef Bielser D, Glardon P, Teschner M, Gross M (2004) A state machine for real-time cutting of tetrahedral meshes. Graph Models 66(6):398–417CrossRef
20.
Zurück zum Zitat Zhang J, Gu L, Li X, Fang M (2009) An advanced hybrid cutting method with an improved state machine for surgical simulation. Comput Medical Imaging Graph 33(1):63–71CrossRef Zhang J, Gu L, Li X, Fang M (2009) An advanced hybrid cutting method with an improved state machine for surgical simulation. Comput Medical Imaging Graph 33(1):63–71CrossRef
21.
Zurück zum Zitat Metzger MC, Gissler M, Asal M, Teschner M (2009) Simultaneous cutting of coupled tetrahedral and triangulated meshes and its application in orbital reconstruction. Int J Comput Assist Radiol Surg 4(5):409–416CrossRefPubMed Metzger MC, Gissler M, Asal M, Teschner M (2009) Simultaneous cutting of coupled tetrahedral and triangulated meshes and its application in orbital reconstruction. Int J Comput Assist Radiol Surg 4(5):409–416CrossRefPubMed
22.
Zurück zum Zitat Molino N, Bao Z, Fedkiw R (2004) A virtual node algorithm for changing mesh topology during simulation. In: ACM transactions on graphics—proceedings of the 2004 SIGGRAPH conference 2004, vol 23(3), pp 385–392 Molino N, Bao Z, Fedkiw R (2004) A virtual node algorithm for changing mesh topology during simulation. In: ACM transactions on graphics—proceedings of the 2004 SIGGRAPH conference 2004, vol 23(3), pp 385–392
23.
Zurück zum Zitat Sifakis E, Der KG, Fedkiw R (2007) Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 73–80 Sifakis E, Der KG, Fedkiw R (2007) Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 73–80
24.
Zurück zum Zitat Jeřábková L, Kuhlen T (2009) Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput Graph Appl 29(2):61–71CrossRefPubMed Jeřábková L, Kuhlen T (2009) Stable cutting of deformable objects in virtual environments using xfem. IEEE Comput Graph Appl 29(2):61–71CrossRefPubMed
25.
Zurück zum Zitat Turkiyyah GM, Karam WB, Ajami Z, Nasri A (2011) Mesh cutting during real-time physical simulation. Comput Aided Des 43(7):809–819CrossRef Turkiyyah GM, Karam WB, Ajami Z, Nasri A (2011) Mesh cutting during real-time physical simulation. Comput Aided Des 43(7):809–819CrossRef
26.
Zurück zum Zitat Kaufmann P, Martin S, Botsch M, Grinspun E, Gross M (2009) Enrichment textures for detailed cutting of shells. In: ACM transactions on graphics—proceedings of ACM SIGGRAPH 2009, vol 28(3), pp 50:1–50:10 Kaufmann P, Martin S, Botsch M, Grinspun E, Gross M (2009) Enrichment textures for detailed cutting of shells. In: ACM transactions on graphics—proceedings of ACM SIGGRAPH 2009, vol 28(3), pp 50:1–50:10
27.
Zurück zum Zitat Jeřábková L, Bousquet G, Barbier S, Faure F, Allard J (2010) Volumetric modeling and interactive cutting of deformable bodies. Prog Biophys Mol Biol 103(2–3):217–224CrossRefPubMed Jeřábková L, Bousquet G, Barbier S, Faure F, Allard J (2010) Volumetric modeling and interactive cutting of deformable bodies. Prog Biophys Mol Biol 103(2–3):217–224CrossRefPubMed
28.
Zurück zum Zitat Dick C, Georgii J, Westermann R (2011) A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans Vis Comput Graph 17(11):1663–1675 Dick C, Georgii J, Westermann R (2011) A hexahedral multigrid approach for simulating cuts in deformable objects. IEEE Trans Vis Comput Graph 17(11):1663–1675
29.
Zurück zum Zitat Seiler M, Steinemann D, Spillmann J, Harders M (2011) Robust interactive cutting based on an adaptive octree simulation mesh. Vis Comput 27(6–8):519–529CrossRef Seiler M, Steinemann D, Spillmann J, Harders M (2011) Robust interactive cutting based on an adaptive octree simulation mesh. Vis Comput 27(6–8):519–529CrossRef
30.
Zurück zum Zitat Wu J, Dick C, Westermann R (2013) Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis Comput 29(6–8):739–749CrossRef Wu J, Dick C, Westermann R (2013) Efficient collision detection for composite finite element simulation of cuts in deformable bodies. Vis Comput 29(6–8):739–749CrossRef
31.
Zurück zum Zitat Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21(8–10):707–716CrossRef Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21(8–10):707–716CrossRef
32.
Zurück zum Zitat Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103(2–3):159–168CrossRefPubMed Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103(2–3):159–168CrossRefPubMed
33.
Zurück zum Zitat Teschner M, Heidelberger B, Mueller M, Pomeranets D, Gross M (2003) Optimized spatial hashing for collision detection of deformable objects. In: Proceedings of vision, modeling, and visualization, pp 47–54 Teschner M, Heidelberger B, Mueller M, Pomeranets D, Gross M (2003) Optimized spatial hashing for collision detection of deformable objects. In: Proceedings of vision, modeling, and visualization, pp 47–54
34.
Zurück zum Zitat Heidelberger B, Teschner M, Keiser R, Mueller M, Gross M (2004) Consistent penetration depth estimation for deformable collision response. In: Proceedings of vision, modeling, and visualization, pp 339–346 Heidelberger B, Teschner M, Keiser R, Mueller M, Gross M (2004) Consistent penetration depth estimation for deformable collision response. In: Proceedings of vision, modeling, and visualization, pp 339–346
35.
Zurück zum Zitat Jean-Marc S, Marc D, Denis R, Christian M, Denis L (2005) Modelling liver tissue properties using a non-linear visco-elastic model. Med Image Anal 9(2):103–112CrossRef Jean-Marc S, Marc D, Denis R, Christian M, Denis L (2005) Modelling liver tissue properties using a non-linear visco-elastic model. Med Image Anal 9(2):103–112CrossRef
Metadaten
Titel
CPU–GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL
verfasst von
Shiyu Jia
Weizhong Zhang
Xiaokang Yu
Zhenkuan Pan
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 9/2015
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-014-1147-0

Weitere Artikel der Ausgabe 9/2015

International Journal of Computer Assisted Radiology and Surgery 9/2015 Zur Ausgabe