Skip to main content

2015 | OriginalPaper | Buchkapitel

4. Cr- and V-Substituted LiMn2O4 Cathode Electrode Materials for High-Rate Battery Applications

verfasst von : Ahsen Akbulut Uludag, Aslıhan Erdaş, Şeyma Özcan, Deniz Nalci, Mehmet Oğuz Güler, Tuğrul Çetinkaya, Mehmet Uysal, Hatem Akbulut

Erschienen in: Progress in Clean Energy, Volume 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spinel Cr- and V-substituted LiMn2O4 cathode materials were prepared by facile sol–gel process, which used lithium carbonate and manganese carbonate as starting materials and citric acid as a chelating agent. In order to increase electronic conductivity and prevent the Mn ion dissolution into the electrolyte, surfaces of the as-synthesized powders were coated with Cu via electroless deposition technique. The structure and physicochemical properties of the obtained Cr- and V-substituted LiMn2O4 powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge discharge tests, and electrochemical impedance spectroscopy (EIS). The results have shown that the successful formation of Cr- and V-substituted LiMn2O4 product was highly dependent on its second-stage calcination temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lilong X, Youlong X, Tao T, Jie S, Goodenough JB (2012) Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. J Mater Chem 22:24563–24568CrossRef Lilong X, Youlong X, Tao T, Jie S, Goodenough JB (2012) Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. J Mater Chem 22:24563–24568CrossRef
2.
Zurück zum Zitat Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H (2014) Nanocomposite anodes for lithium-ion batteries based on SnO2 on multiwalled carbon nanotubes. Int J Energy Res 38:487–498CrossRef Guler MO, Cevher O, Cetinkaya T, Tocoglu U, Akbulut H (2014) Nanocomposite anodes for lithium-ion batteries based on SnO2 on multiwalled carbon nanotubes. Int J Energy Res 38:487–498CrossRef
3.
Zurück zum Zitat Chabot V, Farhad S, Chen Z, Fung AS, Yuland A, Hamdullahpur F (2013) Effect of electrode physical and chemical properties, on lithium-ion battery performance. Int J Energy Res 37:1723–1736CrossRef Chabot V, Farhad S, Chen Z, Fung AS, Yuland A, Hamdullahpur F (2013) Effect of electrode physical and chemical properties, on lithium-ion battery performance. Int J Energy Res 37:1723–1736CrossRef
4.
Zurück zum Zitat Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-Ion batteries. Adv Funct Mater 19:1497–1514CrossRef Kim MG, Cho J (2009) Reversible and high-capacity nanostructured electrode materials for Li-Ion batteries. Adv Funct Mater 19:1497–1514CrossRef
5.
Zurück zum Zitat Wei C, Deng J, Xi L, Huaiying Z, Wang Z, Chung CY, Yao Q, Rao G (2013) High power LiMn2O4 hollow microsphere cathode materials for Lithium Ion batteries. Int J Electrochem Sci 8:6775–6783 Wei C, Deng J, Xi L, Huaiying Z, Wang Z, Chung CY, Yao Q, Rao G (2013) High power LiMn2O4 hollow microsphere cathode materials for Lithium Ion batteries. Int J Electrochem Sci 8:6775–6783
6.
Zurück zum Zitat Liu Q, Wang S, Tan H, Yang Z, Zeng J (2013) Review preparation and doping mode of doped LiMn2O4 for Li-Ion batteries. Energies 6:1718–1730CrossRef Liu Q, Wang S, Tan H, Yang Z, Zeng J (2013) Review preparation and doping mode of doped LiMn2O4 for Li-Ion batteries. Energies 6:1718–1730CrossRef
7.
Zurück zum Zitat Wang J, Xu Y, Wang J, Zhu J, Bai Y, Xiong L (2014) Study on capacitance evolving mechanism of polypyrrole during prolonged cycling. J Phys Chem B 118:1353–1362CrossRef Wang J, Xu Y, Wang J, Zhu J, Bai Y, Xiong L (2014) Study on capacitance evolving mechanism of polypyrrole during prolonged cycling. J Phys Chem B 118:1353–1362CrossRef
8.
Zurück zum Zitat Jayaprakash N, Kalaiselvi N, Gangulibabu CHD, Bhuvaneswari D (2010) A new class of Sol–gel derived LiM1xM2yMn22x2yO3.8F0.2 (M1 = Cr, M2 = V; x = y = 0.2) cathodes for lithium batteries. J Appl Electrochem 40:2193–2202CrossRef Jayaprakash N, Kalaiselvi N, Gangulibabu CHD, Bhuvaneswari D (2010) A new class of Sol–gel derived LiM1xM2yMn22x2yO3.8F0.2 (M1 = Cr, M2 = V; x = y = 0.2) cathodes for lithium batteries. J Appl Electrochem 40:2193–2202CrossRef
9.
Zurück zum Zitat Aklaloucha M, Amarillaa JM, Rojasa RM, Saadoune I, Rojo JM (2008) Chromium doping as a new approach to improve the cycling performance at high temperature of 5 V LiNi0.5Mn1.5O4-based positive electrode. J Power Sources 185:501–511CrossRef Aklaloucha M, Amarillaa JM, Rojasa RM, Saadoune I, Rojo JM (2008) Chromium doping as a new approach to improve the cycling performance at high temperature of 5 V LiNi0.5Mn1.5O4-based positive electrode. J Power Sources 185:501–511CrossRef
10.
Zurück zum Zitat Xu W, Yuan A, Tian L, Wang Y (2011) Improved high-rate cyclability of sol–gel derived Cr-doped spinel LiCryMn2-yO4 in an aqueous electrolyte. J Appl Electrochem 41:453–460CrossRef Xu W, Yuan A, Tian L, Wang Y (2011) Improved high-rate cyclability of sol–gel derived Cr-doped spinel LiCryMn2-yO4 in an aqueous electrolyte. J Appl Electrochem 41:453–460CrossRef
11.
Zurück zum Zitat Sun H, Chen Y, Xu C, Zhu D, Huang L (2012) Electrochemical performance of rare-earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery. J Solid State Electrochem 16:1247–1254CrossRef Sun H, Chen Y, Xu C, Zhu D, Huang L (2012) Electrochemical performance of rare-earth doped LiMn2O4 spinel cathode materials for Li-ion rechargeable battery. J Solid State Electrochem 16:1247–1254CrossRef
12.
Zurück zum Zitat Deng B, Nakamura H, Zhang Q, Yoshio M, Xia Y (2004) Greatly improved elevated-temperature cycling behavior of Li1+xMgyMn2−x−yO4+δ spinels with controlled oxygen stoichiometry. Electrochim Acta 49:1823–1830CrossRef Deng B, Nakamura H, Zhang Q, Yoshio M, Xia Y (2004) Greatly improved elevated-temperature cycling behavior of Li1+xMgyMn2−x−yO4+δ spinels with controlled oxygen stoichiometry. Electrochim Acta 49:1823–1830CrossRef
13.
Zurück zum Zitat Takahashi M, Yoshida T, Ichikawa A, Kitoh K, Katsukawa H, Zhang Q, Yoshio M (2006) Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature. Electrochim Acta 51:5508–5514CrossRef Takahashi M, Yoshida T, Ichikawa A, Kitoh K, Katsukawa H, Zhang Q, Yoshio M (2006) Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature. Electrochim Acta 51:5508–5514CrossRef
14.
Zurück zum Zitat Yang Y, Xie C, Ruffo R, Peng H, Kim D, Cui Y (2009) Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett 9:4109–4114CrossRef Yang Y, Xie C, Ruffo R, Peng H, Kim D, Cui Y (2009) Single nanorod devices for battery diagnostics: a case study on LiMn2O4. Nano Lett 9:4109–4114CrossRef
15.
Zurück zum Zitat Li J, He X, Fan M, Wan C, Jiang C, Zhang S (2006) Capacity fading of LiCr0.1Mn1.9O4/MPCF cells at elevated temperature. Ionics 12:153–157CrossRef Li J, He X, Fan M, Wan C, Jiang C, Zhang S (2006) Capacity fading of LiCr0.1Mn1.9O4/MPCF cells at elevated temperature. Ionics 12:153–157CrossRef
16.
Zurück zum Zitat Wang C, Lu S, Kan S, Pang J, Jin W, Zhang X (2009) Enhanced capacity retention of Co and Li doubly doped LiMn2O4. J Power Sources 189:607–610CrossRef Wang C, Lu S, Kan S, Pang J, Jin W, Zhang X (2009) Enhanced capacity retention of Co and Li doubly doped LiMn2O4. J Power Sources 189:607–610CrossRef
17.
Zurück zum Zitat Liu YJ, Guo HJ, Li XH, Wang ZX (2012) Study on the storage performance of manganese spinel battery. Adv Mater Res 347–353:1395–1398 Liu YJ, Guo HJ, Li XH, Wang ZX (2012) Study on the storage performance of manganese spinel battery. Adv Mater Res 347–353:1395–1398
18.
Zurück zum Zitat Kakuda T, Uematsu K, Toda K, Sato M (2007) Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. J Power Sources 167:499–503CrossRef Kakuda T, Uematsu K, Toda K, Sato M (2007) Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction. J Power Sources 167:499–503CrossRef
19.
Zurück zum Zitat Wang XQ, Tanaike O, Kodama M, Hatori H (2007) High rate capability of the Mg-doped Li–Mn–O spinel prepared via coprecipitated precursor. J Power Sources 168:282–287CrossRef Wang XQ, Tanaike O, Kodama M, Hatori H (2007) High rate capability of the Mg-doped Li–Mn–O spinel prepared via coprecipitated precursor. J Power Sources 168:282–287CrossRef
20.
Zurück zum Zitat Kim Y, Lim J, Kang S (2013) Investigation on the dissolution of Mn ions from LiMn2O4 cathode in the application of lithium ion batteries: first principle molecular orbital method. Int J Quantum Chem 113:148–154CrossRef Kim Y, Lim J, Kang S (2013) Investigation on the dissolution of Mn ions from LiMn2O4 cathode in the application of lithium ion batteries: first principle molecular orbital method. Int J Quantum Chem 113:148–154CrossRef
21.
Zurück zum Zitat Huang H, Wang C, Zhang WK, Gan YP, Kang L (2008) Electrochemical study on LiCo1/6Mn11/6O4 as cathode material for lithium ion batteries at elevated temperature. J Power Sources 184:583–588CrossRef Huang H, Wang C, Zhang WK, Gan YP, Kang L (2008) Electrochemical study on LiCo1/6Mn11/6O4 as cathode material for lithium ion batteries at elevated temperature. J Power Sources 184:583–588CrossRef
22.
Zurück zum Zitat Shaik A, Rudramoorthy R, Neelakrishnan S, Varman KSR, Arjunan TV (2011) Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler. Energy 36:1623–1629CrossRef Shaik A, Rudramoorthy R, Neelakrishnan S, Varman KSR, Arjunan TV (2011) Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler. Energy 36:1623–1629CrossRef
23.
Zurück zum Zitat Eftekhari A (2006) Bundled nanofibers of V-doped LiMn2O4 spinel. Solid State Commun 140:391–394CrossRef Eftekhari A (2006) Bundled nanofibers of V-doped LiMn2O4 spinel. Solid State Commun 140:391–394CrossRef
24.
Zurück zum Zitat Liu J, Sun Z, Xie J, Chen H, Wu N, Wu B (2013) Study of electrochemical performances of multi-doped spinel Li1.1Mn1.85Co0.075Ni0.075O4 at 4.3 and 5 V. Ionics 19:1867–1874CrossRef Liu J, Sun Z, Xie J, Chen H, Wu N, Wu B (2013) Study of electrochemical performances of multi-doped spinel Li1.1Mn1.85Co0.075Ni0.075O4 at 4.3 and 5 V. Ionics 19:1867–1874CrossRef
25.
Zurück zum Zitat Haijun Y, Haoshen Z (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-Ion batteries. J Phys Chem Lett 4:1268–1272CrossRef Haijun Y, Haoshen Z (2013) High-energy cathode materials (Li2MnO3–LiMO2) for lithium-Ion batteries. J Phys Chem Lett 4:1268–1272CrossRef
26.
Zurück zum Zitat Tian J-K, Wan F-C, Battaglia VS, Zhang H-L (2014) Synthesis and electrochemical performance of nanosized multiple-doped LiMn2O4 prepared at low temperature for Li-ion battery. Int J Electrochem Sci 9:931–942 Tian J-K, Wan F-C, Battaglia VS, Zhang H-L (2014) Synthesis and electrochemical performance of nanosized multiple-doped LiMn2O4 prepared at low temperature for Li-ion battery. Int J Electrochem Sci 9:931–942
27.
Zurück zum Zitat Lee K-S, Myung S-T, Bang HJ, Chung SJ, Sun Y-K (2007) Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M = Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochim Acta 52:5201–5206CrossRef Lee K-S, Myung S-T, Bang HJ, Chung SJ, Sun Y-K (2007) Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M = Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochim Acta 52:5201–5206CrossRef
28.
Zurück zum Zitat Myoung YS, Ik HK, Hye RP, Daniel RM (2011) Electrochemical properties of LiCo y Mn2−y O4 synthesized using a combustion method in a voltage range of 3.5–5.0 V. Ceram Int 37:2215–2220CrossRef Myoung YS, Ik HK, Hye RP, Daniel RM (2011) Electrochemical properties of LiCo y Mn2−y O4 synthesized using a combustion method in a voltage range of 3.5–5.0 V. Ceram Int 37:2215–2220CrossRef
29.
Zurück zum Zitat Amarilla M, Petrov K, Picó F, Avdeev G, Rojo JM, Rojas RM (2009) Sucrose-aided combustion synthesis of nanosized LiMn1.99−yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels: characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J Power Sources 191:591–600CrossRef Amarilla M, Petrov K, Picó F, Avdeev G, Rojo JM, Rojas RM (2009) Sucrose-aided combustion synthesis of nanosized LiMn1.99−yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels: characterization and electrochemical behavior at 25 and at 55 °C in rechargeable lithium cells. J Power Sources 191:591–600CrossRef
30.
Zurück zum Zitat Changju C, Hongyeol P, Dongwook K, Jongsik K, Eun S, Jung KL (2013) A Li-ion battery using LiMn2O4 cathode and MnO x /C anode. J Power Sources 244:214–221CrossRef Changju C, Hongyeol P, Dongwook K, Jongsik K, Eun S, Jung KL (2013) A Li-ion battery using LiMn2O4 cathode and MnO x /C anode. J Power Sources 244:214–221CrossRef
31.
Zurück zum Zitat Ouyang CY, Zeng XM, Sljivancanin Z, Baldereschi A (2010) Oxidation states of mn atoms at clean and Al2O3-covered LiMn2O4(001) surfaces. J Phys Chem C 114:4756–4759CrossRef Ouyang CY, Zeng XM, Sljivancanin Z, Baldereschi A (2010) Oxidation states of mn atoms at clean and Al2O3-covered LiMn2O4(001) surfaces. J Phys Chem C 114:4756–4759CrossRef
32.
Zurück zum Zitat Arumugam D, Kalaignan GP (2011) Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications. Thin Solid Films 520:338–343CrossRef Arumugam D, Kalaignan GP (2011) Electrochemical characterizations of surface modified LiMn2O4 cathode materials for high temperature lithium battery applications. Thin Solid Films 520:338–343CrossRef
33.
Zurück zum Zitat Jayaprakash N, Gangulibabu NK, Bhuvaneswari D (2011) Effect of mono- (Cr) and bication (Cr, V) substitution on LiMn2O4 spinel cathodes. J Solid State Electrochem 15:1243–1251CrossRef Jayaprakash N, Gangulibabu NK, Bhuvaneswari D (2011) Effect of mono- (Cr) and bication (Cr, V) substitution on LiMn2O4 spinel cathodes. J Solid State Electrochem 15:1243–1251CrossRef
34.
Zurück zum Zitat Thirunakaran R, Sivashanmugam A, Gopukumar S, Rajalakshmi R (2009) Cerium and zinc: dual-doped LiMn2O4 spinels as cathode material for use in lithium rechargeable batteries. J Power Sources 187:565–574CrossRef Thirunakaran R, Sivashanmugam A, Gopukumar S, Rajalakshmi R (2009) Cerium and zinc: dual-doped LiMn2O4 spinels as cathode material for use in lithium rechargeable batteries. J Power Sources 187:565–574CrossRef
35.
Zurück zum Zitat Seung TM, Ki SL, Yang KS, Hitoshi Y (2011) Development of high power lithium-ion batteries: layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4. J Power Sources 196:7039–7043CrossRef Seung TM, Ki SL, Yang KS, Hitoshi Y (2011) Development of high power lithium-ion batteries: layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4. J Power Sources 196:7039–7043CrossRef
36.
Zurück zum Zitat Ju B, Wang X, Wu C, Wei Q, Yang X, Shu H, Bai Y (2014) Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. J Solid State Electrochem 18:115–123CrossRef Ju B, Wang X, Wu C, Wei Q, Yang X, Shu H, Bai Y (2014) Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. J Solid State Electrochem 18:115–123CrossRef
37.
Zurück zum Zitat Kim J, Park SM, Roh KC, Lee JW (2013) Effect of manganese vanadate formed on the surface of spinel lithium manganese oxide cathode on high temperature cycle life performance. Bull Kr Chem Soc 34:2573–2576CrossRef Kim J, Park SM, Roh KC, Lee JW (2013) Effect of manganese vanadate formed on the surface of spinel lithium manganese oxide cathode on high temperature cycle life performance. Bull Kr Chem Soc 34:2573–2576CrossRef
38.
Zurück zum Zitat Jarvis KA, Deng ZQ, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621CrossRef Jarvis KA, Deng ZQ, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621CrossRef
39.
Zurück zum Zitat Kim JM, Lee G, Kim BH, Huh YS, Lee GW, Kim HJ (2012) Ultrasound-assisted synthesis of Li-rich mesoporous LiMn2O4 nanospheres for enhancing the electrochemical performance in Li-ion secondary batteries. Ultrason Sonochem 19:627–631CrossRef Kim JM, Lee G, Kim BH, Huh YS, Lee GW, Kim HJ (2012) Ultrasound-assisted synthesis of Li-rich mesoporous LiMn2O4 nanospheres for enhancing the electrochemical performance in Li-ion secondary batteries. Ultrason Sonochem 19:627–631CrossRef
40.
Zurück zum Zitat Yi T-F, Zhu Y-R, Zhu X-D, Shu J, Yue C-B, Zhou A-N (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:779–784CrossRef Yi T-F, Zhu Y-R, Zhu X-D, Shu J, Yue C-B, Zhou A-N (2009) A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery. Ionics 15:779–784CrossRef
41.
Zurück zum Zitat Ke D, Fei Y, Guorong H, Zhong DP, Yanbing C, Kwang SR (2013) Sodium additive to improve rate performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material for Li-ion batteries. J Power Sources 244:29–34CrossRef Ke D, Fei Y, Guorong H, Zhong DP, Yanbing C, Kwang SR (2013) Sodium additive to improve rate performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material for Li-ion batteries. J Power Sources 244:29–34CrossRef
42.
Zurück zum Zitat Mohamed A, Jose MA, Ismael S, Jose MR (2011) LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55 °C: analysis of the effect of the particle size. J Power Sources 196:10222–10227CrossRef Mohamed A, Jose MA, Ismael S, Jose MR (2011) LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55 °C: analysis of the effect of the particle size. J Power Sources 196:10222–10227CrossRef
43.
Zurück zum Zitat Yumei L, Zhenzhen L, Yongliang L, Caifeng C, Yi H, Xiaojing Y (2011) Preparation and electrochemical properties of Li-rich spinel-type lithium manganate coated LiMn2O4. Mater Res Bull 46:2450–2455CrossRef Yumei L, Zhenzhen L, Yongliang L, Caifeng C, Yi H, Xiaojing Y (2011) Preparation and electrochemical properties of Li-rich spinel-type lithium manganate coated LiMn2O4. Mater Res Bull 46:2450–2455CrossRef
44.
Zurück zum Zitat Rajive MT, Anil KKM, Anand PB, Jayalekshmi S (2011) Effect of annealing on structural and electrical properties of the Li–Mn–O thin films, prepared by high frequency RF magnetron sputtering. J Phys Chem Solid 72:1251–1255CrossRef Rajive MT, Anil KKM, Anand PB, Jayalekshmi S (2011) Effect of annealing on structural and electrical properties of the Li–Mn–O thin films, prepared by high frequency RF magnetron sputtering. J Phys Chem Solid 72:1251–1255CrossRef
45.
Zurück zum Zitat Dario C, Petr N, Alexander W, Rudiger K (2011) Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices. Electrochim Acta 56:8403–8411CrossRef Dario C, Petr N, Alexander W, Rudiger K (2011) Mixed bi-material electrodes based on LiMn2O4 and activated carbon for hybrid electrochemical energy storage devices. Electrochim Acta 56:8403–8411CrossRef
46.
Zurück zum Zitat Kedi Y, Jing S, Li Z, Yunfei L, Xiaoyan L, Yanxuan W (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770CrossRef Kedi Y, Jing S, Li Z, Yunfei L, Xiaoyan L, Yanxuan W (2012) Urea combustion synthesis of LiNi0.5Mn1.5O4 as a cathode material for lithium ion batteries. Particuology 10:765–770CrossRef
Metadaten
Titel
Cr- and V-Substituted LiMn2O4 Cathode Electrode Materials for High-Rate Battery Applications
verfasst von
Ahsen Akbulut Uludag
Aslıhan Erdaş
Şeyma Özcan
Deniz Nalci
Mehmet Oğuz Güler
Tuğrul Çetinkaya
Mehmet Uysal
Hatem Akbulut
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-17031-2_4