Skip to main content
Erschienen in: Journal of Materials Science 1/2017

30.08.2016 | Original Paper

Cr- and Zn-substituted cobalt ferrite nanoparticles supported on guanidine–modified graphene oxide as efficient and recyclable catalysts

verfasst von: Ahmad Shaabani, Zeinab Hezarkhani, Mina Keramati Nejad

Erschienen in: Journal of Materials Science | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cr- and Zn-substituted cobalt ferrite nanoparticles supported on guanidine-grafted graphene oxide nanosheets, CrCoFeO4@G–GO and Zn0.5Co0.5Fe2O4@G–GO, were synthesized and characterized by flame atomic absorption spectroscopy, inductively coupled plasma optical emission spectrometer, energy-dispersive spectroscopy, FT-IR spectroscopy, UV–Vis spectroscopy, x-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Brunauer, Emmett, and Teller analysis. The potential of synthesized catalysts has been investigated in the aerobic oxidation of alkyl arenes and alcohols to the corresponding aldehydes and ketones and one-pot tandem oxidative synthesis of 2-phenylbenzo[d]oxazole derivatives. The results show that CrCoFeO4@G–GO and Zn0.5Co0.5Fe2O4@G–GO catalysts exhibit high catalytic activity and selectivity in the oxidation reactions in the absence of any other oxidizing reagent or initiator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Spectral data of 2-phenylbenzo[d]oxazole compounds
2-phenylbenzo[d]oxazole: 1H NMR (300.13 MHz, CDCl3): 6.91–6.95 (1H, m, H–Ar), 7.13–7.16 (2H, m, H–Ar), 7.33–7.36 (1H, m, H–Ar), 7.56–7.76 (4H, m, H–Ar), 8.09–8.12 (1H, m, H–Ar).
2-(o-tolyl)benzo[d]oxazole: 1H NMR (300.13 MHz, CDCl3): 2.51 (3H, s, CH3), 7.14–7.16 (1H, m, H–Ar), 7.22–7.40 (4H, m, H–Ar), 7.51–7.53 (1H, m, H–Ar), 7.58–7.65 (2H, m, H–Ar).
2-(m-tolyl)benzo[d]oxazole: 1H NMR (300.13 MHz, DMSO-d 6 ): 2.51 (3H, s, CH3), 6.55–6.65 (1H, m, H–Ar), 6.85–6.92 (2H, m, H–Ar), 7.08–7.18 (3H, m, H–Ar), 7.46–7.48 (1H, m, H–Ar), 8.21 (1H, d, J = 6.9 Hz, H–Ar).
2-(p-tolyl)benzo[d]oxazole: 1H NMR (300.13 MHz, DMSO-d 6 ): 2.36 (3H, s, CH3), 7.28–7.34 (3H, m, H–Ar), 7.36 (2H, d, J = 7.9 Hz, H–Ar), 7.37–7.41 (1H, m, H–Ar), 7.71 (2H, d, J = 8.0 Hz, H–Ar).
 
Literatur
1.
Zurück zum Zitat Sabater S, Mata JA, Peris E (2014) Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal 4:2038–2047CrossRef Sabater S, Mata JA, Peris E (2014) Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal 4:2038–2047CrossRef
2.
Zurück zum Zitat Liu L, Shen Z, Liang S et al (2013) Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite films. J Mater Sci 49:321–328. doi:10.1007/s10853-013-7708-8c CrossRef Liu L, Shen Z, Liang S et al (2013) Graphene for reducing bubble defects and enhancing mechanical properties of graphene/cellulose acetate composite films. J Mater Sci 49:321–328. doi:10.​1007/​s10853-013-7708-8c CrossRef
5.
Zurück zum Zitat Huang Q, Zhou L, Jiang X et al (2014) Synthesis of copper graphene materials functionalized by amino acids and their catalytic applications. ACS Appl Mater Interfaces 6:13502–13509CrossRef Huang Q, Zhou L, Jiang X et al (2014) Synthesis of copper graphene materials functionalized by amino acids and their catalytic applications. ACS Appl Mater Interfaces 6:13502–13509CrossRef
6.
Zurück zum Zitat He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064CrossRef He H, Gao C (2010) General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chem Mater 22:5054–5064CrossRef
7.
Zurück zum Zitat Georgakilas V, Bourlinos AB, Zboril R et al (2010) Organic functionalisation of graphenes. Chem Commun 46:1766–1768CrossRef Georgakilas V, Bourlinos AB, Zboril R et al (2010) Organic functionalisation of graphenes. Chem Commun 46:1766–1768CrossRef
8.
Zurück zum Zitat Kerscher B, Appel A-K, Thomann R, Mülhaupt R (2013) Treelike polymeric ionic liquids grafted onto graphene nanosheets. Macromolecules 46:4395–4402CrossRef Kerscher B, Appel A-K, Thomann R, Mülhaupt R (2013) Treelike polymeric ionic liquids grafted onto graphene nanosheets. Macromolecules 46:4395–4402CrossRef
9.
Zurück zum Zitat Mandi U, Pramanik M, Singha Roy A et al (2014) Chromium(VI) grafted mesoporous polyaniline as a reusable heterogeneous catalyst for oxidation reactions in aqueous medium. RSC Adv 4:15431–15440CrossRef Mandi U, Pramanik M, Singha Roy A et al (2014) Chromium(VI) grafted mesoporous polyaniline as a reusable heterogeneous catalyst for oxidation reactions in aqueous medium. RSC Adv 4:15431–15440CrossRef
10.
Zurück zum Zitat Yu Y, Lu B, Wang X et al (2010) Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis. Chem Eng J 162:738–742CrossRef Yu Y, Lu B, Wang X et al (2010) Highly selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide by biphasic catalysis. Chem Eng J 162:738–742CrossRef
11.
Zurück zum Zitat Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2364CrossRef Punniyamurthy T, Velusamy S, Iqbal J (2005) Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev 105:2329–2364CrossRef
12.
Zurück zum Zitat Figueiredo H, Silva B, Kuźniarska-Biernacka I et al (2014) Oxidation of cyclohexanol and cyclohexene with triazenido complexes of chromium immobilized in biosorption FAU supports. Chem Eng J 247:134–141CrossRef Figueiredo H, Silva B, Kuźniarska-Biernacka I et al (2014) Oxidation of cyclohexanol and cyclohexene with triazenido complexes of chromium immobilized in biosorption FAU supports. Chem Eng J 247:134–141CrossRef
13.
Zurück zum Zitat Wu G, Wang X, Liu X et al (2014) Environmental benign oxidation of benzyl alcohol catalyzed by sulphonato-salphen–chromium(III) complexes immobilized on MCM-41. Catal Lett 144:364–371CrossRef Wu G, Wang X, Liu X et al (2014) Environmental benign oxidation of benzyl alcohol catalyzed by sulphonato-salphen–chromium(III) complexes immobilized on MCM-41. Catal Lett 144:364–371CrossRef
14.
Zurück zum Zitat Zhou G, Zhang Z, Feng X et al (2012) Ionic liquids promoted the CH oxidation of alcohols to carbonyl compounds using a new polysiloxane-supported (salen)chromium(III) catalyst. Catal Commun 25:69–73CrossRef Zhou G, Zhang Z, Feng X et al (2012) Ionic liquids promoted the CH oxidation of alcohols to carbonyl compounds using a new polysiloxane-supported (salen)chromium(III) catalyst. Catal Commun 25:69–73CrossRef
15.
Zurück zum Zitat Wang X, Wu G, Wang F et al (2012) Base-free selective oxidation of glycerol with 3 % H2O2 catalyzed by sulphonato-salen-chromium(III) intercalated LDH. Catal Commun 28:73–76CrossRef Wang X, Wu G, Wang F et al (2012) Base-free selective oxidation of glycerol with 3 % H2O2 catalyzed by sulphonato-salen-chromium(III) intercalated LDH. Catal Commun 28:73–76CrossRef
16.
Zurück zum Zitat Skobelev IY, Sorokin AB, Kovalenko KA et al (2013) Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal 298:61–69CrossRef Skobelev IY, Sorokin AB, Kovalenko KA et al (2013) Solvent-free allylic oxidation of alkenes with O2 mediated by Fe- and Cr-MIL-101. J Catal 298:61–69CrossRef
17.
Zurück zum Zitat Chung A, Miner MR, Richert KJ et al (2015) Formation of an endoperoxide upon chromium-catalyzed allylic oxidation of a triterpene by oxygen. J Org Chem 80:266–273CrossRef Chung A, Miner MR, Richert KJ et al (2015) Formation of an endoperoxide upon chromium-catalyzed allylic oxidation of a triterpene by oxygen. J Org Chem 80:266–273CrossRef
18.
Zurück zum Zitat Acerson MJ, Bingham BS, Allred CA, Andrus MB (2015) Design and synthesis of terpene based englerin A mimics using chromium oxide mediated remote CH2 oxidation. Tetrahedron Lett 56:3277–3280CrossRef Acerson MJ, Bingham BS, Allred CA, Andrus MB (2015) Design and synthesis of terpene based englerin A mimics using chromium oxide mediated remote CH2 oxidation. Tetrahedron Lett 56:3277–3280CrossRef
19.
Zurück zum Zitat Bokare AD, Choi W (2010) Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 44:7232–7237CrossRef Bokare AD, Choi W (2010) Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environ Sci Technol 44:7232–7237CrossRef
20.
Zurück zum Zitat Wang P, Cai J, Yang J et al (2013) Zinc(II)-catalyzed oxidation of alcohols to carbonyl compounds with chloramine-T. Tetrahedron Lett 54:533–535CrossRef Wang P, Cai J, Yang J et al (2013) Zinc(II)-catalyzed oxidation of alcohols to carbonyl compounds with chloramine-T. Tetrahedron Lett 54:533–535CrossRef
21.
Zurück zum Zitat Kikukawa Y, Yamaguchi K, Mizuno N (2010) Zinc(II) containing γ-keggin sandwich-type silicotungstate: synthesis in organic media and oxidation catalysis. Angew Chem Int Ed 122:6232–6236CrossRef Kikukawa Y, Yamaguchi K, Mizuno N (2010) Zinc(II) containing γ-keggin sandwich-type silicotungstate: synthesis in organic media and oxidation catalysis. Angew Chem Int Ed 122:6232–6236CrossRef
22.
Zurück zum Zitat Tang Z-R, Yin X, Zhang Y, Xu Y-J (2013) One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Adv 3:5956–5965CrossRef Tang Z-R, Yin X, Zhang Y, Xu Y-J (2013) One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Adv 3:5956–5965CrossRef
23.
Zurück zum Zitat Enthaler S, Wu X-F (2015) Zinc catalysis: applications in organic synthesis. Wiley, GermanyCrossRef Enthaler S, Wu X-F (2015) Zinc catalysis: applications in organic synthesis. Wiley, GermanyCrossRef
24.
Zurück zum Zitat Burton JJ, Garten RL (1977) Advanced materials in catalysis. Academic Press, New York Burton JJ, Garten RL (1977) Advanced materials in catalysis. Academic Press, New York
25.
Zurück zum Zitat Yoon T-J, Lee W, Oh Y-S, Lee J-K (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem 27:227–229CrossRef Yoon T-J, Lee W, Oh Y-S, Lee J-K (2003) Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem 27:227–229CrossRef
26.
Zurück zum Zitat Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRef Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRef
27.
Zurück zum Zitat Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanoparticle Res 3:73–78CrossRef Zahn M (2001) Magnetic fluid and nanoparticle applications to nanotechnology. J Nanoparticle Res 3:73–78CrossRef
28.
Zurück zum Zitat Liu W-T (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7CrossRef Liu W-T (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7CrossRef
29.
Zurück zum Zitat Nandan D, Sreenivasulu P, Viswanadham N et al (2014) Synthesis of carbon embedded MFe2O4 (M = Ni, Zn and Co) nanoparticles as efficient hydrogenation catalysts. Dalt Trans 43:12077–12084CrossRef Nandan D, Sreenivasulu P, Viswanadham N et al (2014) Synthesis of carbon embedded MFe2O4 (M = Ni, Zn and Co) nanoparticles as efficient hydrogenation catalysts. Dalt Trans 43:12077–12084CrossRef
30.
Zurück zum Zitat Tong J, Bo L, Li Z et al (2009) Magnetic CoFe2O4 nanocrystal: a novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. J Mol Catal A 307:58–63CrossRef Tong J, Bo L, Li Z et al (2009) Magnetic CoFe2O4 nanocrystal: a novel and efficient heterogeneous catalyst for aerobic oxidation of cyclohexane. J Mol Catal A 307:58–63CrossRef
31.
Zurück zum Zitat Gawande MB, Rathi A, Nogueira ID et al (2012) A recyclable ferrite-Co magnetic nanocatalyst for the oxidation of alcohols to carbonyl compounds. Chempluschem 77:865–871CrossRef Gawande MB, Rathi A, Nogueira ID et al (2012) A recyclable ferrite-Co magnetic nanocatalyst for the oxidation of alcohols to carbonyl compounds. Chempluschem 77:865–871CrossRef
32.
Zurück zum Zitat Bhat PB, Inam F, Bhat BR (2014) Nickel hydroxide/Cobalt–Ferrite magnetic nanocatalyst for alcohol oxidation. ACS Comb Sci 16:397–402CrossRef Bhat PB, Inam F, Bhat BR (2014) Nickel hydroxide/Cobalt–Ferrite magnetic nanocatalyst for alcohol oxidation. ACS Comb Sci 16:397–402CrossRef
33.
Zurück zum Zitat Baker JE, Burch R, Yuqin N (1991) Investigation of CoAl2O4, Cu/CoAl2O4 and Co/CoAl2O4 catalysts for the formation of oxygenates from a carbon monoxide-carbon dioxide-hydrogen mixture. Appl Catal 73:135–152CrossRef Baker JE, Burch R, Yuqin N (1991) Investigation of CoAl2O4, Cu/CoAl2O4 and Co/CoAl2O4 catalysts for the formation of oxygenates from a carbon monoxide-carbon dioxide-hydrogen mixture. Appl Catal 73:135–152CrossRef
34.
Zurück zum Zitat Fang Y, Liu Y, Deng W, Liu J (2014) Cu–Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas. J Energy Chem 23:527–534CrossRef Fang Y, Liu Y, Deng W, Liu J (2014) Cu–Co bi-metal catalyst prepared by perovskite CuO/LaCoO3 used for higher alcohol synthesis from syngas. J Energy Chem 23:527–534CrossRef
35.
Zurück zum Zitat Teunissen W, Bol AA, Geus JW (1999) Magnetic catalyst bodies. Catal Today 48:329–336CrossRef Teunissen W, Bol AA, Geus JW (1999) Magnetic catalyst bodies. Catal Today 48:329–336CrossRef
36.
Zurück zum Zitat Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed Engl 49:3428–3459CrossRef Shylesh S, Schünemann V, Thiel WR (2010) Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew Chem Int Ed Engl 49:3428–3459CrossRef
37.
Zurück zum Zitat Dhakshinamoorthy A, Alvaro M, Concepción P et al (2012) Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem Commun 48:5443–5445CrossRef Dhakshinamoorthy A, Alvaro M, Concepción P et al (2012) Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides. Chem Commun 48:5443–5445CrossRef
38.
Zurück zum Zitat Shaabani A, Hezarkhani Z, Shaabani S (2014) Cellulose supported manganese dioxide nanosheet catalyzed aerobic oxidation of organic compounds. RSC Adv 4:64419–64428CrossRef Shaabani A, Hezarkhani Z, Shaabani S (2014) Cellulose supported manganese dioxide nanosheet catalyzed aerobic oxidation of organic compounds. RSC Adv 4:64419–64428CrossRef
39.
Zurück zum Zitat Shaabani A, Hezarkhani Z, Badali E (2015) Wool supported manganese dioxide nano-scale dispersion: as a biopolymer based catalyst for the aerobic oxidation of the organic compounds. RSC Adv 5:61759–61767CrossRef Shaabani A, Hezarkhani Z, Badali E (2015) Wool supported manganese dioxide nano-scale dispersion: as a biopolymer based catalyst for the aerobic oxidation of the organic compounds. RSC Adv 5:61759–61767CrossRef
40.
Zurück zum Zitat Shaabani A, Hezarkhani Z, Badali E (2015) One-pot oxidative Ugi-type three-component reaction of aromatic hydrocarbons of petroleum naphtha: comparing catalytic effect of cellulose- and wool–SO3H supported with manganese dioxide nanostructures. RSC Adv 5:91966–91973CrossRef Shaabani A, Hezarkhani Z, Badali E (2015) One-pot oxidative Ugi-type three-component reaction of aromatic hydrocarbons of petroleum naphtha: comparing catalytic effect of cellulose- and wool–SO3H supported with manganese dioxide nanostructures. RSC Adv 5:91966–91973CrossRef
41.
Zurück zum Zitat Shaabani A, Hezarkhani Z (2015) Copper(II) and iron(II) tetraamino- and tetrasulfophthalocyanines supported on cellulose: synthesis, characterization and catalytic activity on aerobic oxidation of alkyl arenes and alcohols. Cellulose 22:3027–3046CrossRef Shaabani A, Hezarkhani Z (2015) Copper(II) and iron(II) tetraamino- and tetrasulfophthalocyanines supported on cellulose: synthesis, characterization and catalytic activity on aerobic oxidation of alkyl arenes and alcohols. Cellulose 22:3027–3046CrossRef
42.
Zurück zum Zitat Mofakham H, Hezarkhani Z, Shaabani A (2012) Cellulose-SO3H as a biodegradable solid acid catalyzed one-pot three-component Ugi reaction: Synthesis of α-amino amide, 3,4-dihydroquinoxalin-2-amine, 4H-benzo[b][1, 4]thiazin-2-amine and 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J Mol Catal A 360:26–34CrossRef Mofakham H, Hezarkhani Z, Shaabani A (2012) Cellulose-SO3H as a biodegradable solid acid catalyzed one-pot three-component Ugi reaction: Synthesis of α-amino amide, 3,4-dihydroquinoxalin-2-amine, 4H-benzo[b][1, 4]thiazin-2-amine and 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J Mol Catal A 360:26–34CrossRef
43.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
44.
Zurück zum Zitat Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRef Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRef
45.
Zurück zum Zitat Iqbal MJ, Siddiquah MR (2008) Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials. J Alloys Compd 453:513–518CrossRef Iqbal MJ, Siddiquah MR (2008) Electrical and magnetic properties of chromium-substituted cobalt ferrite nanomaterials. J Alloys Compd 453:513–518CrossRef
46.
Zurück zum Zitat Yaseneva P, Bowker M, Hutchings G (2011) Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Phys Chem Chem Phys 13:18609–18614CrossRef Yaseneva P, Bowker M, Hutchings G (2011) Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Phys Chem Chem Phys 13:18609–18614CrossRef
47.
Zurück zum Zitat Kumar S, Nair RR, Pillai PB et al (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436CrossRef Kumar S, Nair RR, Pillai PB et al (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436CrossRef
48.
Zurück zum Zitat Yang T, Liu L, Liu J et al (2012) Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultra-trace cadmium. J Mater Chem 22:21909–21916CrossRef Yang T, Liu L, Liu J et al (2012) Cyanobacterium metallothionein decorated graphene oxide nanosheets for highly selective adsorption of ultra-trace cadmium. J Mater Chem 22:21909–21916CrossRef
49.
Zurück zum Zitat Atashkar B, Rostami A, Tahmasbi B (2013) Magnetic nanoparticle-supported guanidine as a highly recyclable and efficient nanocatalyst for the cyanosilylation of carbonyl compounds. Catal Sci Technol 3:2140–2146CrossRef Atashkar B, Rostami A, Tahmasbi B (2013) Magnetic nanoparticle-supported guanidine as a highly recyclable and efficient nanocatalyst for the cyanosilylation of carbonyl compounds. Catal Sci Technol 3:2140–2146CrossRef
50.
Zurück zum Zitat Adalberto PR, José dos Santos F, Golfeto CC et al (2012) Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles. Analyst 137:4855–4859CrossRef Adalberto PR, José dos Santos F, Golfeto CC et al (2012) Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles. Analyst 137:4855–4859CrossRef
51.
Zurück zum Zitat Kung HH, Pellet RJ, Burwell RL Jr (1976) Structure sensitivity in the hydrogenation of hindered hydrocarbons. J Am Chem Soc 98:5603–5611CrossRef Kung HH, Pellet RJ, Burwell RL Jr (1976) Structure sensitivity in the hydrogenation of hindered hydrocarbons. J Am Chem Soc 98:5603–5611CrossRef
52.
Zurück zum Zitat Lee TR, Whitesides GM (1992) Heterogeneous, platinum-catalyzed hydrogenations of (diolefin)dialkylplatinum(II) complexes. Acc Chem Res 25:266–272CrossRef Lee TR, Whitesides GM (1992) Heterogeneous, platinum-catalyzed hydrogenations of (diolefin)dialkylplatinum(II) complexes. Acc Chem Res 25:266–272CrossRef
53.
Zurück zum Zitat Zaera F (2001) Probing catalytic reactions at surfaces. Prog Surf Sci 69:1–98CrossRef Zaera F (2001) Probing catalytic reactions at surfaces. Prog Surf Sci 69:1–98CrossRef
54.
Zurück zum Zitat Bala M, Verma PK, Sharma U et al (2013) Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem 15:1687CrossRef Bala M, Verma PK, Sharma U et al (2013) Iron phthalocyanine as an efficient and versatile catalyst for N-alkylation of heterocyclic amines with alcohols: one-pot synthesis of 2-substituted benzimidazoles, benzothiazoles and benzoxazoles. Green Chem 15:1687CrossRef
55.
Zurück zum Zitat Shaabani A, Hezarkhani Z, Badali E (2016) Natural silk supported manganese dioxide nanostructures: synthesis and catalytic activity in aerobic oxidation and one-pot tandem oxidative synthesis of organic compounds. Polyhedron 107:176–182CrossRef Shaabani A, Hezarkhani Z, Badali E (2016) Natural silk supported manganese dioxide nanostructures: synthesis and catalytic activity in aerobic oxidation and one-pot tandem oxidative synthesis of organic compounds. Polyhedron 107:176–182CrossRef
56.
Zurück zum Zitat Leng Y, Yang F, Zhu W et al (2011) Chlorination and ortho-acetoxylation of 2-arylbenzoxazoles. Org Biomol Chem 9:5288–5296CrossRef Leng Y, Yang F, Zhu W et al (2011) Chlorination and ortho-acetoxylation of 2-arylbenzoxazoles. Org Biomol Chem 9:5288–5296CrossRef
57.
Zurück zum Zitat Ackermann L, Althammer A, Fenner S (2009) Palladium-catalyzed direct arylations of heteroarenes with tosylates and mesylates. Angew Chem Int Ed 48:201–204CrossRef Ackermann L, Althammer A, Fenner S (2009) Palladium-catalyzed direct arylations of heteroarenes with tosylates and mesylates. Angew Chem Int Ed 48:201–204CrossRef
58.
Zurück zum Zitat Kawashita Y, Nakamichi N, Kawabata H, Hayashi M (2003) Direct and practical synthesis of 2-arylbenzoxazoles promoted by activated carbon. Org Lett 5:3713–3715CrossRef Kawashita Y, Nakamichi N, Kawabata H, Hayashi M (2003) Direct and practical synthesis of 2-arylbenzoxazoles promoted by activated carbon. Org Lett 5:3713–3715CrossRef
59.
Zurück zum Zitat Noshiranzadeh N, Bikas R, Ślepokura K et al (2014) Synthesis, characterization and catalytic activity of new Cr(III) complex in oxidation of primary alcohols to aldehydes. Inorg Chim Acta 421:176–182CrossRef Noshiranzadeh N, Bikas R, Ślepokura K et al (2014) Synthesis, characterization and catalytic activity of new Cr(III) complex in oxidation of primary alcohols to aldehydes. Inorg Chim Acta 421:176–182CrossRef
60.
Zurück zum Zitat Zou X, Goswami A, Asefa T (2013) Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc–cobalt layered double hydroxide. J Am Chem Soc 135:17242–17245CrossRef Zou X, Goswami A, Asefa T (2013) Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc–cobalt layered double hydroxide. J Am Chem Soc 135:17242–17245CrossRef
61.
Zurück zum Zitat Ede SR, Ramadoss A, Nithiyanantham U et al (2015) Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg Chem 54:3851–3863CrossRef Ede SR, Ramadoss A, Nithiyanantham U et al (2015) Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg Chem 54:3851–3863CrossRef
Metadaten
Titel
Cr- and Zn-substituted cobalt ferrite nanoparticles supported on guanidine–modified graphene oxide as efficient and recyclable catalysts
verfasst von
Ahmad Shaabani
Zeinab Hezarkhani
Mina Keramati Nejad
Publikationsdatum
30.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0314-9

Weitere Artikel der Ausgabe 1/2017

Journal of Materials Science 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.