Skip to main content
Erschienen in: Journal of Materials Science 24/2016

23.08.2016 | Original Paper

Cr doping and heat treatment effect on core–shell Ni nanocluster film

verfasst von: J. A. Sundararajan, M. Kaur, J. Burns, Y. Q. Wu, T. Schimel, Y. Qiang

Erschienen in: Journal of Materials Science | Ausgabe 24/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Core–shell nickel (CS-Ni) and 5 at.% chromium-doped nickel (CS-Ni5Cr) nanocluster (NC) films, prepared by a nanocluster deposition system, were studied for heat treatment (HT)-induced structural, physical, and magnetic property alterations. Understanding the HT influence and oxidation mechanism at nanoscale can make these nanomaterials potential candidates for applications that involve stainless steel alloys. The contribution of Cr doping in altering the microstructural and relative oxidation kinetics was investigated in detail before and after the HT. The oxidation mechanism describes that the cation diffusivity increases following the doping of 5 at.% of Cr in Ni, which makes the oxidation rate of Ni5Cr HT higher than that of Ni-HT. At a temperature of 600 °C, a dramatic change was observed in surface morphology with many island-like nanostructures on the surface of Ni5Cr. The interface structure of the Cr-rich oxide layer plays a key role in the islands formation via agglomeration of NCs. The as-prepared and HT samples were analyzed by transmission electron microscopy, atomic force microscopy, magnetic force microscopy, energy-dispersive spectroscopy, and vibrating sample magnetometer to provide an insight on the effectiveness of chromium-doped nickel film.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang XX, Wen GH, Huang S, Dai L, Gao R, Wang ZL (2001) Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J Magn Magn Mater 231:9–12CrossRef Zhang XX, Wen GH, Huang S, Dai L, Gao R, Wang ZL (2001) Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J Magn Magn Mater 231:9–12CrossRef
2.
Zurück zum Zitat Hu S, Li Y, McCloy J, Montgomery R, Henager CJ (2013) Magnetic hardening from the suppression of domain walls by nonmagnetic particles. IEEE Magn Lett 4:3500104CrossRef Hu S, Li Y, McCloy J, Montgomery R, Henager CJ (2013) Magnetic hardening from the suppression of domain walls by nonmagnetic particles. IEEE Magn Lett 4:3500104CrossRef
3.
Zurück zum Zitat Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536CrossRef Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536CrossRef
4.
Zurück zum Zitat Hu J, Chen G, Lo I (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715CrossRef Hu J, Chen G, Lo I (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715CrossRef
5.
Zurück zum Zitat Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle—actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959CrossRef Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle—actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959CrossRef
6.
Zurück zum Zitat Kaur M, Johnson A, Tian G, Jiang W, Rao L, Paszczynski A, Qiang Y (2013) Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2:124–132CrossRef Kaur M, Johnson A, Tian G, Jiang W, Rao L, Paszczynski A, Qiang Y (2013) Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2:124–132CrossRef
7.
Zurück zum Zitat Makhlouf SA, Parker FT, Spada FE, Berkowitz AE (1997) Magnetic anomalies in NiO nanoparticles. J Appl Phys 81:5561–5563CrossRef Makhlouf SA, Parker FT, Spada FE, Berkowitz AE (1997) Magnetic anomalies in NiO nanoparticles. J Appl Phys 81:5561–5563CrossRef
8.
Zurück zum Zitat Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396CrossRef Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396CrossRef
9.
Zurück zum Zitat Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H (2003) Magnetic properties of NiO nanoparticles. Phys B Condens Matter 329–333, Part 2:862–863 Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H (2003) Magnetic properties of NiO nanoparticles. Phys B Condens Matter 329–333, Part 2:862–863
10.
Zurück zum Zitat Smart JS, Greenwald S (1951) Crystal structure transitions in antiferromagnetic compounds at the curie temperature. Phys Rev 82:113–114CrossRef Smart JS, Greenwald S (1951) Crystal structure transitions in antiferromagnetic compounds at the curie temperature. Phys Rev 82:113–114CrossRef
11.
Zurück zum Zitat Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434CrossRef Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434CrossRef
12.
Zurück zum Zitat Guan YF, Pearce RC, Melechko AV, Hensley DK, Simpson ML, Rack PD (2008) Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth. Nanotechnology 19:235604CrossRef Guan YF, Pearce RC, Melechko AV, Hensley DK, Simpson ML, Rack PD (2008) Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth. Nanotechnology 19:235604CrossRef
13.
Zurück zum Zitat Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF (2002) Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A 74:387–391CrossRef Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF (2002) Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A 74:387–391CrossRef
14.
Zurück zum Zitat Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994CrossRef Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994CrossRef
15.
Zurück zum Zitat McClintock DA, Sokolov MA, Hoelzer DT, Nanstad RK (2009) Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392:353–359CrossRef McClintock DA, Sokolov MA, Hoelzer DT, Nanstad RK (2009) Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392:353–359CrossRef
16.
Zurück zum Zitat Mukhopadhyay DK, Froes FH, Gelles DS (1998) Development of oxide dispersion strengthened ferritic steels for fusion. J Nucl Mater 258–263, Part 2:1209–1215 Mukhopadhyay DK, Froes FH, Gelles DS (1998) Development of oxide dispersion strengthened ferritic steels for fusion. J Nucl Mater 258–263, Part 2:1209–1215
17.
Zurück zum Zitat McCloy JS, Jiang W, Droubay TC, Varga T, Kovarik L, Sundararajan JA, Kaur M, Qiang Y, Burks EC, Liu K (2013) Ion irradiation of Fe-Fe oxide core-shell nanocluster films: effect of interface on stability of magnetic properties. J Appl Phys 114:083903–083903–9CrossRef McCloy JS, Jiang W, Droubay TC, Varga T, Kovarik L, Sundararajan JA, Kaur M, Qiang Y, Burks EC, Liu K (2013) Ion irradiation of Fe-Fe oxide core-shell nanocluster films: effect of interface on stability of magnetic properties. J Appl Phys 114:083903–083903–9CrossRef
18.
Zurück zum Zitat Kaur M, Qiang Y, Jiang W, Pearce C, McCloy JS (2014) Magnetization Measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials. IEEE Trans Magn 50:1–5CrossRef Kaur M, Qiang Y, Jiang W, Pearce C, McCloy JS (2014) Magnetization Measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials. IEEE Trans Magn 50:1–5CrossRef
19.
Zurück zum Zitat Wang ZK, Kuok MH, Ng SC, Lockwood DJ, Cottam MG, Nielsch K, Wehrspohn RB, Gösele U (2002) Spin-wave quantization in ferromagnetic nickel nanowires. Phys Rev Lett 89:027201CrossRef Wang ZK, Kuok MH, Ng SC, Lockwood DJ, Cottam MG, Nielsch K, Wehrspohn RB, Gösele U (2002) Spin-wave quantization in ferromagnetic nickel nanowires. Phys Rev Lett 89:027201CrossRef
20.
Zurück zum Zitat Johnston-Peck AC, Wang J, Tracy JB (2009) Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles. ACS Nano 3:1077–1084CrossRef Johnston-Peck AC, Wang J, Tracy JB (2009) Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles. ACS Nano 3:1077–1084CrossRef
21.
Zurück zum Zitat Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2006) Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci 8:425–430CrossRef Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2006) Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci 8:425–430CrossRef
22.
Zurück zum Zitat Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloys Compd 476:797–801CrossRef Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloys Compd 476:797–801CrossRef
23.
Zurück zum Zitat Kaur M, McCloy JS, Jiang W, Yao Q, Qiang Y (2012) Size dependence of inter- and intracluster interactions in core-shell iron–iron oxide nanoclusters. J Phys Chem C 116:12875–12885CrossRef Kaur M, McCloy JS, Jiang W, Yao Q, Qiang Y (2012) Size dependence of inter- and intracluster interactions in core-shell iron–iron oxide nanoclusters. J Phys Chem C 116:12875–12885CrossRef
24.
Zurück zum Zitat Kaur M, McCloy JS, Qiang Y (2013) Exchange bias in core-shell iron-iron oxide nanoclusters. J Appl Phys 113:17D715–17D715–3CrossRef Kaur M, McCloy JS, Qiang Y (2013) Exchange bias in core-shell iron-iron oxide nanoclusters. J Appl Phys 113:17D715–17D715–3CrossRef
25.
Zurück zum Zitat Kaur M, Dai Q, Bowden M, Engelhard M, Wu Y, Tang J, Qiang Y (2013) Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters. Appl Phys Lett 103:202407CrossRef Kaur M, Dai Q, Bowden M, Engelhard M, Wu Y, Tang J, Qiang Y (2013) Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters. Appl Phys Lett 103:202407CrossRef
26.
Zurück zum Zitat Gich M, Shafranovsky EA, Roig A, Ślawska-Waniewska A, Racka K, Casas L, Petrov YI, Molins E, Thomas MF (2005) Aerosol nanoparticles in the Fe1—xCrx system: room-temperature stabilization of the σ phase and σ→α-phase transformation. J Appl Phys 98:024303–024303–8 Gich M, Shafranovsky EA, Roig A, Ślawska-Waniewska A, Racka K, Casas L, Petrov YI, Molins E, Thomas MF (2005) Aerosol nanoparticles in the Fe1—xCrx system: room-temperature stabilization of the σ phase and σ→α-phase transformation. J Appl Phys 98:024303–024303–8
27.
Zurück zum Zitat Racka K, Ślawska-Waniewska A, Krzyżewski A, Gich M, Roig A, Shafranovsky EA, Petrov YI (2008) Magnetic behaviour of Fe–Cr nanoparticle systems. J Magn Magn Mater 320:e683–e687CrossRef Racka K, Ślawska-Waniewska A, Krzyżewski A, Gich M, Roig A, Shafranovsky EA, Petrov YI (2008) Magnetic behaviour of Fe–Cr nanoparticle systems. J Magn Magn Mater 320:e683–e687CrossRef
28.
Zurück zum Zitat Kaur M, Dai Q, Bowden M, Engelhard MH, Wu Y, Tang J, Qiang Y (2013) Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal. Nanoscale 5:7872–7881CrossRef Kaur M, Dai Q, Bowden M, Engelhard MH, Wu Y, Tang J, Qiang Y (2013) Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal. Nanoscale 5:7872–7881CrossRef
29.
Zurück zum Zitat Wang C-M, Baer DR, Bruemmer SM, Engelhard MH, Bowden ME, Sundararajan JA, Qiang Y (2011) Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles. J Nanosci Nanotechnol 11:8488–8497CrossRef Wang C-M, Baer DR, Bruemmer SM, Engelhard MH, Bowden ME, Sundararajan JA, Qiang Y (2011) Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles. J Nanosci Nanotechnol 11:8488–8497CrossRef
30.
Zurück zum Zitat Wang C-M, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM (2014) In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci Rep 4:3683 Wang C-M, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM (2014) In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci Rep 4:3683
31.
Zurück zum Zitat Chen Y, Peng D-L, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703CrossRef Chen Y, Peng D-L, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703CrossRef
32.
Zurück zum Zitat Rosen MJ, Kunjappu JT (2010) Surfactants and interfacial phenomena. Wiley, New Jersey Rosen MJ, Kunjappu JT (2010) Surfactants and interfacial phenomena. Wiley, New Jersey
33.
Zurück zum Zitat Thompson CV, Carel R (1996) Stress and grain growth in thin films. J Mech Phys Solids 44:657–673CrossRef Thompson CV, Carel R (1996) Stress and grain growth in thin films. J Mech Phys Solids 44:657–673CrossRef
34.
Zurück zum Zitat Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 304:711–714CrossRef Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 304:711–714CrossRef
35.
Zurück zum Zitat Anumol EA, Viswanath B, Ganesan PG, Shi Y, Ramanath G, Ravishankar N (2010) Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates. Nanoscale 2:1423–1425CrossRef Anumol EA, Viswanath B, Ganesan PG, Shi Y, Ramanath G, Ravishankar N (2010) Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates. Nanoscale 2:1423–1425CrossRef
Metadaten
Titel
Cr doping and heat treatment effect on core–shell Ni nanocluster film
verfasst von
J. A. Sundararajan
M. Kaur
J. Burns
Y. Q. Wu
T. Schimel
Y. Qiang
Publikationsdatum
23.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 24/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0299-4

Weitere Artikel der Ausgabe 24/2016

Journal of Materials Science 24/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.