Skip to main content
Erschienen in: Meccanica 9/2016

09.01.2016

Crack–inclusion interaction due to mismatched thermal expansion under plane stress condition

verfasst von: W. F. Chen, B. Peng, F. H. Wang, M. L. Feng

Erschienen in: Meccanica | Ausgabe 9/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the temperature changes in composites molding, mico-cracks are observed due to the mismatch expansion for the reinforcement and medium. An approximate expression for the change of the stress intensity factor near a Mode I crack is proposed with the consideration of the reinforcement as an inclusion that is subjected to the coupled mechanical and thermal loads under the plane stress condition. The transformation toughening theory and Eshelby inclusion method is applied in the analysis, and the mismatched thermal expansion strain is employed as the additional eigen strain. The finite element analysis is then carried out to validate the developed formula. The effect of the temperature-dependence of material properties on the crack behavior is estimated and discussed. It is found that the mismatched expansion coefficient plays an important role on the crack–inclusion interaction under the free boundary condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Herrmann H, Eik M, Berg V, Puttonen J (2014) Phenomenological and numerical modeling of short fiber reinforce cementitious composites. Meccanica 49:1985–2000MathSciNetCrossRefMATH Herrmann H, Eik M, Berg V, Puttonen J (2014) Phenomenological and numerical modeling of short fiber reinforce cementitious composites. Meccanica 49:1985–2000MathSciNetCrossRefMATH
2.
Zurück zum Zitat Withers PJ, Stobbs WM, Pederson OB (1989) The application of the Eshelby method of internal stress determination to short fiber metal matrix composites. Acta Mettall 37:3061–3084CrossRef Withers PJ, Stobbs WM, Pederson OB (1989) The application of the Eshelby method of internal stress determination to short fiber metal matrix composites. Acta Mettall 37:3061–3084CrossRef
3.
Zurück zum Zitat Bricic M, Canadija M, Brnic J (2013) Estimation of material properties of nanocomposite structures. Meccanica 48:2209–2220CrossRefMATH Bricic M, Canadija M, Brnic J (2013) Estimation of material properties of nanocomposite structures. Meccanica 48:2209–2220CrossRefMATH
4.
Zurück zum Zitat Chen MH, Zhu SL, Shen ML, Wang FH, Niu Y (2011) Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites. Mater Sci Eng A 528:1360–1366CrossRef Chen MH, Zhu SL, Shen ML, Wang FH, Niu Y (2011) Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites. Mater Sci Eng A 528:1360–1366CrossRef
5.
Zurück zum Zitat Tamate O (1968) The effect of a circular inclusion on the stresses around a line crack in a sheet under tension. Int J Fract 4:257–266 Tamate O (1968) The effect of a circular inclusion on the stresses around a line crack in a sheet under tension. Int J Fract 4:257–266
6.
Zurück zum Zitat Cheeseman BA, Santare MH (2000) The interaction of a curved crack with a circular elastic inclusion. Int J Fract 103:259–277CrossRef Cheeseman BA, Santare MH (2000) The interaction of a curved crack with a circular elastic inclusion. Int J Fract 103:259–277CrossRef
7.
Zurück zum Zitat Erdogan F, Gupta GD, Ratwani M (1974) Interaction between a circular inclusion and an arbitrarily oriented crack. ASME J Appl Mech 41:1007–1013CrossRefMATH Erdogan F, Gupta GD, Ratwani M (1974) Interaction between a circular inclusion and an arbitrarily oriented crack. ASME J Appl Mech 41:1007–1013CrossRefMATH
8.
Zurück zum Zitat Ma LF, Korsunsky MA, Mcmeeking RM (2013) Fundamental formulation for transformation toughening in anisotropic solids. ASME J Appl Mech 80:0510011–0510019 Ma LF, Korsunsky MA, Mcmeeking RM (2013) Fundamental formulation for transformation toughening in anisotropic solids. ASME J Appl Mech 80:0510011–0510019
9.
Zurück zum Zitat Li Z, Yang L (2002) The application of the Eshelby equivalent inclusion method for unifying modulus and transformation toughening. Int J Solid Struct 39:5225–5240CrossRefMATH Li Z, Yang L (2002) The application of the Eshelby equivalent inclusion method for unifying modulus and transformation toughening. Int J Solid Struct 39:5225–5240CrossRefMATH
10.
Zurück zum Zitat Li H, Yang J, Li Z (2014) An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape. Eng Fract Mech 116:190–196CrossRef Li H, Yang J, Li Z (2014) An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape. Eng Fract Mech 116:190–196CrossRef
11.
Zurück zum Zitat Lipetzky P, Schmauder S (1994) Crack–particle interaction in two-phase composites, part I: particle shape effects. Int J Fract 65:345–358CrossRef Lipetzky P, Schmauder S (1994) Crack–particle interaction in two-phase composites, part I: particle shape effects. Int J Fract 65:345–358CrossRef
12.
Zurück zum Zitat Wang C, Libardi N, Baldo JB (1988) Analysis of crack extension paths and toughening in a two phase brittle particulate composites by the boundary element method. Int J Fract 94:177–188CrossRef Wang C, Libardi N, Baldo JB (1988) Analysis of crack extension paths and toughening in a two phase brittle particulate composites by the boundary element method. Int J Fract 94:177–188CrossRef
13.
Zurück zum Zitat Helsing J (1999) Stress intensity factors for a crack in front of an inclusion. Eng Fract Mech 64:245–253CrossRef Helsing J (1999) Stress intensity factors for a crack in front of an inclusion. Eng Fract Mech 64:245–253CrossRef
14.
Zurück zum Zitat Fett T, Diegele E, Rizzi G (1996) Calculation of stress fields near inclusions by use of the fracture mechanics weight function. Eng Fract Mech 53:17–22CrossRef Fett T, Diegele E, Rizzi G (1996) Calculation of stress fields near inclusions by use of the fracture mechanics weight function. Eng Fract Mech 53:17–22CrossRef
15.
Zurück zum Zitat Roatta A, Bolmaro RE (1997) An Eshelby inclusion-based model for the study of stresses and plastic strain location in metal matrix composites I: general formulation and its application to round particles. Mater Sci Eng, A 229:182–191CrossRef Roatta A, Bolmaro RE (1997) An Eshelby inclusion-based model for the study of stresses and plastic strain location in metal matrix composites I: general formulation and its application to round particles. Mater Sci Eng, A 229:182–191CrossRef
16.
Zurück zum Zitat Chiang CR (2006) Thermal mismatch stress of a spherical inclusion in a cubic crystal. Int J Fract 139:313–317CrossRefMATH Chiang CR (2006) Thermal mismatch stress of a spherical inclusion in a cubic crystal. Int J Fract 139:313–317CrossRefMATH
17.
Zurück zum Zitat Peng B, Feng ML, Fan JQ (2015) Study on the crack–inclusion interaction with coupled mechanical and thermal strains. Theor Appl Fract Mech 136:185–194 Peng B, Feng ML, Fan JQ (2015) Study on the crack–inclusion interaction with coupled mechanical and thermal strains. Theor Appl Fract Mech 136:185–194
18.
Zurück zum Zitat Peng B, Feng ML (2015) Study on the plane stress mode II crack–inclusion interaction with coupled mechanical and thermal strains. Arch Appl Mech 85:725–733CrossRef Peng B, Feng ML (2015) Study on the plane stress mode II crack–inclusion interaction with coupled mechanical and thermal strains. Arch Appl Mech 85:725–733CrossRef
19.
Zurück zum Zitat Hutchinson JW (1974). Harvard University Report DEAPS-8, Boston Hutchinson JW (1974). Harvard University Report DEAPS-8, Boston
20.
Zurück zum Zitat Lambropoulous JC (1986) Shear, shape and orientation effects in transformation toughening in ceramics. Int J Solid Struct 22:1083–1106CrossRef Lambropoulous JC (1986) Shear, shape and orientation effects in transformation toughening in ceramics. Int J Solid Struct 22:1083–1106CrossRef
21.
Zurück zum Zitat Mura T (1987) Micromechanics of defects in solids, second revised edition. Martinus Nijhoff Publishers, Dordrecht Mura T (1987) Micromechanics of defects in solids, second revised edition.  Martinus Nijhoff Publishers, Dordrecht
22.
Zurück zum Zitat ABAQUS (2012) User’s manual and theory manual. Karlsson and Sorensen Inc, Hibbit ABAQUS (2012) User’s manual and theory manual. Karlsson and Sorensen Inc, Hibbit
23.
Zurück zum Zitat Altair HyerMesh (2005). Version 10.0, Altair Engineering, Inc Altair HyerMesh (2005). Version 10.0, Altair Engineering, Inc
24.
Zurück zum Zitat Dever JA, Nathal MV, DiCarlo JA (2013) Research on high-temperature aerospace materials at NASA glenn research center. J Aerosp Eng 26:500–516CrossRef Dever JA, Nathal MV, DiCarlo JA (2013) Research on high-temperature aerospace materials at NASA glenn research center. J Aerosp Eng 26:500–516CrossRef
25.
Zurück zum Zitat Zhou C, Wang N, Xu H (2007) Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Mater Sci Eng A 452–453:569–574CrossRef Zhou C, Wang N, Xu H (2007) Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. Mater Sci Eng A 452–453:569–574CrossRef
26.
Zurück zum Zitat Spinner S, Cleek GW (1960) Temperature dependence of Young’s modulus of viteous germania and silica. J Appl Phys 31:1407–1410ADSCrossRef Spinner S, Cleek GW (1960) Temperature dependence of Young’s modulus of viteous germania and silica. J Appl Phys 31:1407–1410ADSCrossRef
27.
Zurück zum Zitat Rouxel T, Sangleboeuf JC, Huger M, Gault C, Besson JL, Testu S (2002) Temperature dependence of Young’s modulus in Si3N4 based ceramics: roles of sintering additives and of SiC particle content. Acta Mater 50:1669–1682CrossRef Rouxel T, Sangleboeuf JC, Huger M, Gault C, Besson JL, Testu S (2002) Temperature dependence of Young’s modulus in Si3N4 based ceramics: roles of sintering additives and of SiC particle content. Acta Mater 50:1669–1682CrossRef
28.
Zurück zum Zitat Omar AA, El-Shennawi AWA, El-Ghannam AR (1991) Thermal expansion of Li2O–ZnO–Al2O3–SiO2 glasses and corresponding glass–ceramics. J Mater Sci 26:6049–6056ADSCrossRef Omar AA, El-Shennawi AWA, El-Ghannam AR (1991) Thermal expansion of Li2O–ZnO–Al2O3–SiO2 glasses and corresponding glass–ceramics. J Mater Sci 26:6049–6056ADSCrossRef
29.
Zurück zum Zitat Shelby JE (1974) Properties and structures of B2O3–GeO2 glasses. J Appl Phys 45:5272–5277ADSCrossRef Shelby JE (1974) Properties and structures of B2O3–GeO2 glasses. J Appl Phys 45:5272–5277ADSCrossRef
Metadaten
Titel
Crack–inclusion interaction due to mismatched thermal expansion under plane stress condition
verfasst von
W. F. Chen
B. Peng
F. H. Wang
M. L. Feng
Publikationsdatum
09.01.2016
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 9/2016
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-016-0360-z

Weitere Artikel der Ausgabe 9/2016

Meccanica 9/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.