Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2017

10.04.2017

Crack Initiation and Growth from Pre-corroded Pits in Aluminum 7075-T6 Under Laboratory Air and Salt Water Environments

verfasst von: G. Joshi, S. Mall

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Small crack growth behavior, including the pit-to-crack transition, of pre-corroded aluminum alloy 7075-T6 was investigated under ambient air and saltwater environments. Through pit and corner crack pits were created prior to constant stress amplitude fatigue testing. The small crack growth life (SCGL) and crack initiation life (CIL) under salt water condition were about 5-8 times less when compared to those under ambient air. The ratio of SCGL to CIL was significantly smaller with large uncertainty (variation) under salt water environment. The small crack growth rates under salt water were 2-12 times larger than corresponding rates under laboratory air at identical stress amplitude and crack length. The crack lengths required to attain Paris region growth rates (Paris region threshold crack lengths) were about 1-3 mm for stress amplitudes less than 45 MPa. Sub-millimeter cracks attained 10−4 mm/cycle fatigue crack growth rates (FCGR) for stress amplitudes greater than 45 MPa. The crack growth rates of 0.25-mm-long cracks were about 2 times higher for salt water environment when compared to identical stress conditions in ambient air. Empirical crack growth rate versus stress intensity factor range equations similar to Paris law were developed for small crack growth and crack initiation under ambient air and salt water condition, for fatigue crack prognostics applications. For the design applications, a modified Kitagawa-Takahashi (K-T) diagram for corrosion-pitted aluminum 7075-T6 is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Abubaker, J.G. Bakuckas, J. Awerbuch, A.C. Lau, and T.-M. Tan, Evolution of Multiple-Site Damage in the Riveted Lap Joint of a Fuselage Panel, Proceedings of 8th Joint NASA/FAA/DoD Conferrence on Aging Aircraft, 2005, p. 14. A. Abubaker, J.G. Bakuckas, J. Awerbuch, A.C. Lau, and T.-M. Tan, Evolution of Multiple-Site Damage in the Riveted Lap Joint of a Fuselage Panel, Proceedings of 8th Joint NASA/FAA/DoD Conferrence on Aging Aircraft, 2005, p. 14.
2.
Zurück zum Zitat M. Amiri, A. Arcari, L. Airoldi, M. Naderi, and N. Iyyer, A Continuum Damage Mechanics Model for Pit-to-Crack Transition in AA2024-T3, Corros. Sci., 2015, 98, p 678–687CrossRef M. Amiri, A. Arcari, L. Airoldi, M. Naderi, and N. Iyyer, A Continuum Damage Mechanics Model for Pit-to-Crack Transition in AA2024-T3, Corros. Sci., 2015, 98, p 678–687CrossRef
3.
Zurück zum Zitat V. Sabelkin, H. Misak, V. Perel, S. Mall, Z. Dolu, and I. Al-qahtani, Crack Initiation from Corrosion Pit in Three Aluminum Alloys Under Ambient and Saltwater Environments, J. Mater. Eng. Perform., 2016, 25(4), p 1634–1642CrossRef V. Sabelkin, H. Misak, V. Perel, S. Mall, Z. Dolu, and I. Al-qahtani, Crack Initiation from Corrosion Pit in Three Aluminum Alloys Under Ambient and Saltwater Environments, J. Mater. Eng. Perform., 2016, 25(4), p 1634–1642CrossRef
4.
Zurück zum Zitat L. Christodoulou, Prognosis: A New Fleet Management Strategy, Enterprise Technology Strategy, BOEING, October 15, 2013, p. 14. L. Christodoulou, Prognosis: A New Fleet Management Strategy, Enterprise Technology Strategy, BOEING, October 15, 2013, p. 14.
5.
Zurück zum Zitat J.M. Papazian, E.L. Anagnostou, S.J. Engel, D. Hoitsma, J. Madsen, R.P. Silberstein, G. Welsh, and J.B. Whiteside, A Structural Integrity Prognosis System, Eng. Fract. Mech., 2009, 76(5), p 620–632CrossRef J.M. Papazian, E.L. Anagnostou, S.J. Engel, D. Hoitsma, J. Madsen, R.P. Silberstein, G. Welsh, and J.B. Whiteside, A Structural Integrity Prognosis System, Eng. Fract. Mech., 2009, 76(5), p 620–632CrossRef
6.
Zurück zum Zitat J.S. Madsen, E.L. Anagnostou, S.J. Engel, D.H. Hoitsma, J.A. Nardiello, and J. M. Papazian, Overview of the DARPA Structural Integrity Prognosis System (SIPS), 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010, p. 8. J.S. Madsen, E.L. Anagnostou, S.J. Engel, D.H. Hoitsma, J.A. Nardiello, and J. M. Papazian, Overview of the DARPA Structural Integrity Prognosis System (SIPS), 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010, p. 8.
7.
Zurück zum Zitat E. Anagnostou, Reliability and Risk in Practice, Panel 1: Frontiers of Reliability Engineering, University of Maryland, April 2, 2014, p. 19. E. Anagnostou, Reliability and Risk in Practice, Panel 1: Frontiers of Reliability Engineering, University of Maryland, April 2, 2014, p. 19.
8.
Zurück zum Zitat N. Iyyer, S. Sarkar, R. Merrill, and N. Phan, Aircraft Life Management Using Crack Initiation and Crack Growth Models—P-3C Aircraft Experience, Int. J. Fatigue, 2007, 29(9–11), p 1584–1607CrossRef N. Iyyer, S. Sarkar, R. Merrill, and N. Phan, Aircraft Life Management Using Crack Initiation and Crack Growth Models—P-3C Aircraft Experience, Int. J. Fatigue, 2007, 29(9–11), p 1584–1607CrossRef
9.
Zurück zum Zitat S. Arunachalam and S. Fawaz, Test Method for Corrosion Pit-to-Fatigue Crack Transition from a Corner of Hole in 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2016, 91, p 50–58CrossRef S. Arunachalam and S. Fawaz, Test Method for Corrosion Pit-to-Fatigue Crack Transition from a Corner of Hole in 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2016, 91, p 50–58CrossRef
10.
Zurück zum Zitat D. Mantha and S. Fawaz, Standardized Test Method for Corrosion Pit-to-Fatigue Crack Transition in AA7075-T651 Aluminum Alloy, Adv. Mater. Res., 2014, 891–892, p 205–210CrossRef D. Mantha and S. Fawaz, Standardized Test Method for Corrosion Pit-to-Fatigue Crack Transition in AA7075-T651 Aluminum Alloy, Adv. Mater. Res., 2014, 891–892, p 205–210CrossRef
11.
Zurück zum Zitat S. Fawaz, Fatigue Crack Growth in Riveted Joints, PhD Thesis, TU Delft, 1997, p. 252. S. Fawaz, Fatigue Crack Growth in Riveted Joints, PhD Thesis, TU Delft, 1997, p. 252.
12.
Zurück zum Zitat S.A. Fawaz and A. Börje, Accurate Stress Intensity Factor Solutions for Corner Cracks at a Hole, Eng. Fract. Mech., 2004, 71(9–10), p 1235–1254CrossRef S.A. Fawaz and A. Börje, Accurate Stress Intensity Factor Solutions for Corner Cracks at a Hole, Eng. Fract. Mech., 2004, 71(9–10), p 1235–1254CrossRef
13.
Zurück zum Zitat S. Fawaz and J. Harter, Impact of Parameter Accuracy on Aircraft Structural Integrity Estimates, AFRL-VA-WP-TR-2001-3057, July, 2001, p. 177. S. Fawaz and J. Harter, Impact of Parameter Accuracy on Aircraft Structural Integrity Estimates, AFRL-VA-WP-TR-2001-3057, July, 2001, p. 177.
14.
Zurück zum Zitat M.J. Hammond and S.A. Fawaz, Stress Intensity Factors of Various Size Single Edge-Cracked Tension Specimens: A Review and New Solutions, Eng. Fract. Mech., 2016, 153, p 25–34CrossRef M.J. Hammond and S.A. Fawaz, Stress Intensity Factors of Various Size Single Edge-Cracked Tension Specimens: A Review and New Solutions, Eng. Fract. Mech., 2016, 153, p 25–34CrossRef
15.
Zurück zum Zitat S.A. Barter and L. Molent, Fatigue Cracking from a Corrosion Pit in an Aircraft Bulkhead, Eng. Fail. Anal., 2014, 39, p 155–163CrossRef S.A. Barter and L. Molent, Fatigue Cracking from a Corrosion Pit in an Aircraft Bulkhead, Eng. Fail. Anal., 2014, 39, p 155–163CrossRef
16.
Zurück zum Zitat R. Chlistovsky, P. Heffernan, and D. Duquesnay, Corrosion-Fatigue Behaviour of 7075-T651 Aluminum Alloy Subjected to Periodic Overloads, Int. J. Fatigue, 2007, 29(9–11), p 1941–1949CrossRef R. Chlistovsky, P. Heffernan, and D. Duquesnay, Corrosion-Fatigue Behaviour of 7075-T651 Aluminum Alloy Subjected to Periodic Overloads, Int. J. Fatigue, 2007, 29(9–11), p 1941–1949CrossRef
17.
Zurück zum Zitat D. DuQuesnay, Fatigue Crack Growth from Corrosion Damage in 7075-T6511 Aluminium Alloy Under Aircraft Loading, Int. J. Fatigue, 2003, 25(5), p 371–377CrossRef D. DuQuesnay, Fatigue Crack Growth from Corrosion Damage in 7075-T6511 Aluminium Alloy Under Aircraft Loading, Int. J. Fatigue, 2003, 25(5), p 371–377CrossRef
18.
Zurück zum Zitat K.K. Sankaran, R. Perez, and K.V. Jata, Effects of Pitting Corrosion on the Fatigue Behavior of Aluminum Alloy 7075-T6: Modeling and Experimental Studies, Mater. Sci. Eng. A, 2001, 297(1–2), p 223–229CrossRef K.K. Sankaran, R. Perez, and K.V. Jata, Effects of Pitting Corrosion on the Fatigue Behavior of Aluminum Alloy 7075-T6: Modeling and Experimental Studies, Mater. Sci. Eng. A, 2001, 297(1–2), p 223–229CrossRef
19.
Zurück zum Zitat Y. Fujimoto, K. Hamada, E. Shintaku, and G. Pirker, Inherent Damage Zone Model for Strength Evaluation of Small Fatigue Cracks, Eng. Fract. Mech., 2001, 68, p 455–473CrossRef Y. Fujimoto, K. Hamada, E. Shintaku, and G. Pirker, Inherent Damage Zone Model for Strength Evaluation of Small Fatigue Cracks, Eng. Fract. Mech., 2001, 68, p 455–473CrossRef
20.
Zurück zum Zitat C.S. Harris, R.S. Piascik, and J. C. Newman, A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints, NASA/TM-2000-210106, January, 1999, p. 21. C.S. Harris, R.S. Piascik, and J. C. Newman, A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints, NASA/TM-2000-210106, January, 1999, p. 21.
21.
Zurück zum Zitat R. Jones, L. Molent, and S. Pitt, Crack Growth of Physically Small Cracks, Int. J. Fatigue, 2007, 29(9–11), p 1658–1667CrossRef R. Jones, L. Molent, and S. Pitt, Crack Growth of Physically Small Cracks, Int. J. Fatigue, 2007, 29(9–11), p 1658–1667CrossRef
22.
Zurück zum Zitat H.E. Misak, V.Y. Perel, V. Sabelkin, and S. Mall, Corrosion Fatigue Crack Growth Behavior of 7075-T6 Under Biaxial Tension-Tension Cyclic Loading Condition, Eng. Fract. Mech., 2013, 106, p 38–48CrossRef H.E. Misak, V.Y. Perel, V. Sabelkin, and S. Mall, Corrosion Fatigue Crack Growth Behavior of 7075-T6 Under Biaxial Tension-Tension Cyclic Loading Condition, Eng. Fract. Mech., 2013, 106, p 38–48CrossRef
23.
Zurück zum Zitat H.E. Misak, V.Y. Perel, V. Sabelkin, and S. Mall, Crack Growth Behavior of 7075-T6 Under Biaxial Tension-Tension Fatigue, Int. J. Fatigue, 2013, 55, p 158–165CrossRef H.E. Misak, V.Y. Perel, V. Sabelkin, and S. Mall, Crack Growth Behavior of 7075-T6 Under Biaxial Tension-Tension Fatigue, Int. J. Fatigue, 2013, 55, p 158–165CrossRef
24.
Zurück zum Zitat L. Molent and R. Jones, The Influence of Cyclic Stress Intensity Threshold on Fatigue Life Scatter, Int. J. Fatigue, 2016, 82, p 748–756CrossRef L. Molent and R. Jones, The Influence of Cyclic Stress Intensity Threshold on Fatigue Life Scatter, Int. J. Fatigue, 2016, 82, p 748–756CrossRef
25.
Zurück zum Zitat J.C. Newman and R. Ramakrishnan, Fatigue and Crack-Growth Analyses of Riveted Lap-Joints in a Retired Aircraft, Int. J. Fatigue, 2016, 82, p 342–349CrossRef J.C. Newman and R. Ramakrishnan, Fatigue and Crack-Growth Analyses of Riveted Lap-Joints in a Retired Aircraft, Int. J. Fatigue, 2016, 82, p 342–349CrossRef
26.
Zurück zum Zitat R. Sunder, A Unified Model of Fatigue Kinetics Based on Crack Driving Force and Material Resistance, Int. J. Fatigue, 2007, 29(9–11), p 1681–1696CrossRef R. Sunder, A Unified Model of Fatigue Kinetics Based on Crack Driving Force and Material Resistance, Int. J. Fatigue, 2007, 29(9–11), p 1681–1696CrossRef
27.
Zurück zum Zitat R. Sundar, Why and How Residual Stress Affects Metal Fatigue, Advanced Materials: Manufacturing, Physics, Mechanics and Applications, 2016, p. 489–504. R. Sundar, Why and How Residual Stress Affects Metal Fatigue, Advanced Materials: Manufacturing, Physics, Mechanics and Applications, 2016, p. 489–504.
28.
Zurück zum Zitat R. Sunder, A. Andronik, A. Biakov, A. Eremin, S. Panin, and A. Savkin, Combined Action of Crack Closure and Residual Stress Under Periodic Overloads: A Fractographic Analysis, Int. J. Fatigue, 2016, 82, p 667–675CrossRef R. Sunder, A. Andronik, A. Biakov, A. Eremin, S. Panin, and A. Savkin, Combined Action of Crack Closure and Residual Stress Under Periodic Overloads: A Fractographic Analysis, Int. J. Fatigue, 2016, 82, p 667–675CrossRef
29.
Zurück zum Zitat R. Sundar, Unraveling the Science of Variable Amplitude Fatigue, J. ASTM Int., 2012, 9(1), p 32 R. Sundar, Unraveling the Science of Variable Amplitude Fatigue, J. ASTM Int., 2012, 9(1), p 32
30.
Zurück zum Zitat Y. Liu and S. Mahadevan, Probabilistic Fatigue Life Prediction Using an Equivalent Initial Flaw Size Distribution, Int. J. Fatigue, 2009, 31, p 476–487CrossRef Y. Liu and S. Mahadevan, Probabilistic Fatigue Life Prediction Using an Equivalent Initial Flaw Size Distribution, Int. J. Fatigue, 2009, 31, p 476–487CrossRef
31.
Zurück zum Zitat A.K. Vasudevan, K. Sadananda, and N. Iyyer, Fatigue Damage Analysis: Issues and Challenges, Int. J. Fatigue, 2016, 82, p 120–133CrossRef A.K. Vasudevan, K. Sadananda, and N. Iyyer, Fatigue Damage Analysis: Issues and Challenges, Int. J. Fatigue, 2016, 82, p 120–133CrossRef
32.
Zurück zum Zitat R.S. Piascik, The Growth of Small Corrosion Fatigue Cracks in Alloy 7075, NASA/TM-2015-218672, January, 2015, p. 13. R.S. Piascik, The Growth of Small Corrosion Fatigue Cracks in Alloy 7075, NASA/TM-2015-218672, January, 2015, p. 13.
33.
Zurück zum Zitat ASTM E647-15: Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2016. ASTM E647-15: Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2016.
34.
Zurück zum Zitat J. Schijve, Fatigue of Structures and Materials, Vol 2, Springer, Berlin, 2009CrossRef J. Schijve, Fatigue of Structures and Materials, Vol 2, Springer, Berlin, 2009CrossRef
35.
Zurück zum Zitat J. Schijve, Fatigue of Structures and Materials in the 20th Century and the State of the Art, Int. J. Fatigue, 2003, 25, p 679–702CrossRef J. Schijve, Fatigue of Structures and Materials in the 20th Century and the State of the Art, Int. J. Fatigue, 2003, 25, p 679–702CrossRef
37.
Zurück zum Zitat V. Sabelkin, V.Y. Perel, H.E. Misak, E.M. Hunt, and S. Mall, Investigation into Crack Initiation from Corrosion Pit in 7075-T6 Under Ambient Laboratory and Saltwater Environments, Eng. Fract. Mech., 2015, 134, p 111–123CrossRef V. Sabelkin, V.Y. Perel, H.E. Misak, E.M. Hunt, and S. Mall, Investigation into Crack Initiation from Corrosion Pit in 7075-T6 Under Ambient Laboratory and Saltwater Environments, Eng. Fract. Mech., 2015, 134, p 111–123CrossRef
38.
Zurück zum Zitat ABAQUS 6.11 Dassault Systems Simila Corporation, USA. 2011. ABAQUS 6.11 Dassault Systems Simila Corporation, USA. 2011.
39.
Zurück zum Zitat S. Kolitsch, H. P. Ganser, J. Maierhofer, and R. Pippan, Fatigue Crack Growth Threshold as a Design Criterion-Statistical Scatter and Load Ratio in the Kitagawa-Takahishi Diagram, IOP Conference Series: Materials Science and Engineering, 2016, p. 10. S. Kolitsch, H. P. Ganser, J. Maierhofer, and R. Pippan, Fatigue Crack Growth Threshold as a Design Criterion-Statistical Scatter and Load Ratio in the Kitagawa-Takahishi Diagram, IOP Conference Series: Materials Science and Engineering, 2016, p. 10.
40.
Zurück zum Zitat J. Maierhofer, H.-P. Gänser, and R. Pippan, Modified Kitagawa-Takahashi Diagram Accounting for Finite Notch Depths, Int. J. Fatigue, 2015, 70, p 503–509CrossRef J. Maierhofer, H.-P. Gänser, and R. Pippan, Modified Kitagawa-Takahashi Diagram Accounting for Finite Notch Depths, Int. J. Fatigue, 2015, 70, p 503–509CrossRef
Metadaten
Titel
Crack Initiation and Growth from Pre-corroded Pits in Aluminum 7075-T6 Under Laboratory Air and Salt Water Environments
verfasst von
G. Joshi
S. Mall
Publikationsdatum
10.04.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2656-0

Weitere Artikel der Ausgabe 5/2017

Journal of Materials Engineering and Performance 5/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.