Skip to main content
Erschienen in: Acta Mechanica Sinica 2/2020

12.02.2020 | Research Paper

Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model

verfasst von: Xingxue Lu, Yuliang Hou, Ying Tie, Cheng Li, Chuanzeng Zhang

Erschienen in: Acta Mechanica Sinica | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fracture is a very common failure mode of the composite materials, which seriously affects the reliability and service-life of composite materials. Therefore, the study of the fracture behavior of the composite materials is of great significance and necessity, which demands an accurate and efficient numerical tool in general cases because of the complexity of the arising boundary-value or initial-boundary value problems. In this paper, a phase field model is adopted and applied for the numerical simulation of the crack nucleation and propagation in brittle linear elastic two-phase perforated/particulate composites under a quasi-static tensile loading. The phase field model can well describe the initiation, propagation and coalescence of the cracks without assuming the existence and the geometry of the initial cracks in advance. Its numerical implementation is realized within the framework of the finite element method (FEM). The accuracy and the efficiency of the present phase field model are verified by the available reference results in literature. In the numerical examples, we first study and discuss the influences of the hole/particle size on the crack propagation trajectory and the force–displacement curve. Then, the effects of the hole/particle shape on the crack initiation and propagation are investigated. Furthermore, numerical examples are presented and discussed to show the influences of the hole/particle location on the crack initiation and propagation characteristics. It will be demonstrated that the present phase field model is an efficient tool for the numerical simulation of the crack initiation and propagation problems in brittle two-phase composite materials, and the corresponding results may play an important role in predicting and preventing possible hazardous crack initiation and propagation in engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Erdogan, F., Gupta, G.D.: The inclusion problem with a crack crossing the boundary. Int. J. Fract. 11, 13–27 (1975) Erdogan, F., Gupta, G.D.: The inclusion problem with a crack crossing the boundary. Int. J. Fract. 11, 13–27 (1975)
2.
Zurück zum Zitat Wang, C., Libardi, W., Baldo, J.B.: Analysis of crack extension paths and toughening in a two phase brittle particulate composite by the boundary element method. Int. J. Fract. 94, 177–188 (1998) Wang, C., Libardi, W., Baldo, J.B.: Analysis of crack extension paths and toughening in a two phase brittle particulate composite by the boundary element method. Int. J. Fract. 94, 177–188 (1998)
3.
Zurück zum Zitat Ponnusami, S.A., Turteltaub, S., van der Zwaag, S.: Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng. Fract. Mech. 149, 170–190 (2015) Ponnusami, S.A., Turteltaub, S., van der Zwaag, S.: Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng. Fract. Mech. 149, 170–190 (2015)
4.
Zurück zum Zitat Zhang, P., Hu, X., Yang, S., et al.: Modelling progressive failure in multi-phase materials using a phase field method. Eng. Fract. Mech. 209, 105–124 (2019) Zhang, P., Hu, X., Yang, S., et al.: Modelling progressive failure in multi-phase materials using a phase field method. Eng. Fract. Mech. 209, 105–124 (2019)
5.
Zurück zum Zitat Demir, I., Zbib, H.M., Khaleel, M.: Microscopic analysis of crack propagation for multiple cracks, inclusions and voids. Theor. Appl. Fract. Mech. 36, 147–164 (2001) Demir, I., Zbib, H.M., Khaleel, M.: Microscopic analysis of crack propagation for multiple cracks, inclusions and voids. Theor. Appl. Fract. Mech. 36, 147–164 (2001)
6.
Zurück zum Zitat Griffith, A.A.: VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921) Griffith, A.A.: VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. Lond. A 221, 163–198 (1921)
7.
Zurück zum Zitat Irwin, G.R.: Fracture. In: Handbuch der Physik, Band VI, Elastizität und Plastizität. Springer-Verlag, Berlin 6, 551–590 (1958) Irwin, G.R.: Fracture. In: Handbuch der Physik, Band VI, Elastizität und Plastizität. Springer-Verlag, Berlin 6, 551–590 (1958)
8.
Zurück zum Zitat Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963) Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519–525 (1963)
9.
Zurück zum Zitat Sih, G.C.: Mechanics of Fracture-Methods of Analysis and Solutions of Crack Problems. NoordHoff International Publishers, Leyden (1973)MATH Sih, G.C.: Mechanics of Fracture-Methods of Analysis and Solutions of Crack Problems. NoordHoff International Publishers, Leyden (1973)MATH
10.
Zurück zum Zitat Palaniswamy, K., Knauss, W.G.: Propagation of a crack under general, in-plane tension. Int. J. Fract. Mech. 8, 114–117 (1972) Palaniswamy, K., Knauss, W.G.: Propagation of a crack under general, in-plane tension. Int. J. Fract. Mech. 8, 114–117 (1972)
11.
Zurück zum Zitat Steif, P.S.: A semi-infinite crack partially penetrating a circular inclusion. J. Appl. Mech. 54, 87–92 (1987)MATH Steif, P.S.: A semi-infinite crack partially penetrating a circular inclusion. J. Appl. Mech. 54, 87–92 (1987)MATH
12.
Zurück zum Zitat Shahani, A.R., Fasakhodi, M.R.A.: Finite element analysis of dynamic crack propagation using remeshing technique. Mater. Des. 30, 1032–1041 (2009) Shahani, A.R., Fasakhodi, M.R.A.: Finite element analysis of dynamic crack propagation using remeshing technique. Mater. Des. 30, 1032–1041 (2009)
13.
Zurück zum Zitat Peng, G.L., Wang, Y.H.: A node split method for crack growth problem. Appl. Mech. Mater. 182–183, 1524–1528 (2012) Peng, G.L., Wang, Y.H.: A node split method for crack growth problem. Appl. Mech. Mater. 182–183, 1524–1528 (2012)
14.
Zurück zum Zitat Lei, J., Wang, Y.S., Huang, Y., et al.: Dynamic crack propagation in matrix involving inclusions by a time-domain BEM. Eng. Anal. Bound. Elem. 36, 651–657 (2012)MathSciNetMATH Lei, J., Wang, Y.S., Huang, Y., et al.: Dynamic crack propagation in matrix involving inclusions by a time-domain BEM. Eng. Anal. Bound. Elem. 36, 651–657 (2012)MathSciNetMATH
15.
Zurück zum Zitat Sukumar, N., Chopp, D.L., Moës, N., et al.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190, 6183–6200 (2001)MathSciNetMATH Sukumar, N., Chopp, D.L., Moës, N., et al.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190, 6183–6200 (2001)MathSciNetMATH
16.
Zurück zum Zitat Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)MathSciNetMATH Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46, 1319–1342 (1998)MathSciNetMATH
17.
18.
Zurück zum Zitat Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)MathSciNetMATH Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48, 797–826 (2000)MathSciNetMATH
19.
Zurück zum Zitat Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)MATH Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57, 1209–1229 (2009)MATH
20.
Zurück zum Zitat Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)MathSciNetMATH Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91, 5–148 (2008)MathSciNetMATH
21.
Zurück zum Zitat Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math 42, 577–685 (1989)MathSciNetMATH Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math 42, 577–685 (1989)MathSciNetMATH
22.
Zurück zum Zitat Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetMATH Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199, 2765–2778 (2010)MathSciNetMATH
23.
Zurück zum Zitat Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetMATH Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83, 1273–1311 (2010)MathSciNetMATH
24.
Zurück zum Zitat Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., et al.: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 139, 18–39 (2015) Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., et al.: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 139, 18–39 (2015)
25.
Zurück zum Zitat Nguyen, T.T., Yvonnet, J., Bornert, M., et al.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197, 213–226 (2016) Nguyen, T.T., Yvonnet, J., Bornert, M., et al.: On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int. J. Fract. 197, 213–226 (2016)
26.
Zurück zum Zitat Molnár, G., Gravouil, A.: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem. Anal. Des. 130, 27–38 (2017) Molnár, G., Gravouil, A.: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem. Anal. Des. 130, 27–38 (2017)
27.
Zurück zum Zitat Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 103, 72–99 (2017)MathSciNet Wu, J.Y.: A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 103, 72–99 (2017)MathSciNet
28.
Zurück zum Zitat Zhou, S., Rabczuk, T., Zhuang, X.: Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv. Eng. Softw. 122, 31–49 (2018) Zhou, S., Rabczuk, T., Zhuang, X.: Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv. Eng. Softw. 122, 31–49 (2018)
29.
Zurück zum Zitat Lu, X., Li, C., Tie, Y., et al.: Crack propagation simulation in brittle elastic materials by a phase field method. Theor. Appl. Mech. Lett. 9, 339–352 (2019) Lu, X., Li, C., Tie, Y., et al.: Crack propagation simulation in brittle elastic materials by a phase field method. Theor. Appl. Mech. Lett. 9, 339–352 (2019)
30.
Zurück zum Zitat Hofacker, M., Miehe, C.: Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178, 113–129 (2012) Hofacker, M., Miehe, C.: Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int. J. Fract. 178, 113–129 (2012)
31.
Zurück zum Zitat Borden, M.J., Verhoosel, C.V., Scott, M.A., et al.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)MathSciNetMATH Borden, M.J., Verhoosel, C.V., Scott, M.A., et al.: A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)MathSciNetMATH
32.
Zurück zum Zitat Nguyen, V.P., Wu, J.Y.: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput. Methods Appl. Mech. Eng. 340, 1000–1022 (2018)MathSciNetMATH Nguyen, V.P., Wu, J.Y.: Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput. Methods Appl. Mech. Eng. 340, 1000–1022 (2018)MathSciNetMATH
33.
Zurück zum Zitat Hesch, C., Weinberg, K.: Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int. J. Numer. Methods Eng. 99, 906–924 (2014)MathSciNetMATH Hesch, C., Weinberg, K.: Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. Int. J. Numer. Methods Eng. 99, 906–924 (2014)MathSciNetMATH
34.
Zurück zum Zitat Miehe, C., Schänzel, L.M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015)MathSciNetMATH Miehe, C., Schänzel, L.M., Ulmer, H.: Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput. Methods Appl. Mech. Eng. 294, 449–485 (2015)MathSciNetMATH
35.
Zurück zum Zitat Zhou, S., Zhuang, X., Rabczuk, T.: Phase-field modeling of fluid-driven dynamic cracking in porous media. Comput. Methods Appl. Mech. Eng. 350, 169–198 (2019)MathSciNetMATH Zhou, S., Zhuang, X., Rabczuk, T.: Phase-field modeling of fluid-driven dynamic cracking in porous media. Comput. Methods Appl. Mech. Eng. 350, 169–198 (2019)MathSciNetMATH
36.
Zurück zum Zitat Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Eng. 290, 466–495 (2015)MathSciNetMATH Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Eng. 290, 466–495 (2015)MathSciNetMATH
37.
Zurück zum Zitat Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016) Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)
38.
Zurück zum Zitat Xia, L., Yvonnet, J., Ghabezloo, S.: Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media. Eng. Fract. Mech. 186, 158–180 (2017) Xia, L., Yvonnet, J., Ghabezloo, S.: Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media. Eng. Fract. Mech. 186, 158–180 (2017)
39.
Zurück zum Zitat Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 119, 20–42 (2018)MathSciNet Wu, J.Y., Nguyen, V.P.: A length scale insensitive phase-field damage model for brittle fracture. J. Mech. Phys. Solids 119, 20–42 (2018)MathSciNet
40.
Zurück zum Zitat Teichtmeister, S., Kienle, D., Aldakheel, F., et al.: Phase field modeling of fracture in anisotropic brittle solids. Int. J. Nonlin. Mech. 97, 1–21 (2017) Teichtmeister, S., Kienle, D., Aldakheel, F., et al.: Phase field modeling of fracture in anisotropic brittle solids. Int. J. Nonlin. Mech. 97, 1–21 (2017)
41.
Zurück zum Zitat Nguyen, T.T., Réthoré, J., Baietto, M.C.: Phase field modelling of anisotropic crack propagation. Eur. J. Mech. A-Solid 65, 279–288 (2017)MathSciNetMATH Nguyen, T.T., Réthoré, J., Baietto, M.C.: Phase field modelling of anisotropic crack propagation. Eur. J. Mech. A-Solid 65, 279–288 (2017)MathSciNetMATH
42.
Zurück zum Zitat Emdadi, A., Fahrenholtz, W.G., Hilmas, G.E., et al.: A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials. Eng. Fract. Mech. 200, 339–354 (2018) Emdadi, A., Fahrenholtz, W.G., Hilmas, G.E., et al.: A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials. Eng. Fract. Mech. 200, 339–354 (2018)
43.
Zurück zum Zitat Yang, Z.J., Li, B.B., Wu, J.Y.: X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng. Fract. Mech. 208, 151–170 (2019) Yang, Z.J., Li, B.B., Wu, J.Y.: X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng. Fract. Mech. 208, 151–170 (2019)
44.
Zurück zum Zitat Yin, B.B., Zhang, L.W.: Phase field method for simulating the brittle fracture of fiber reinforced composites. Eng. Fract. Mech. 211, 321–340 (2019) Yin, B.B., Zhang, L.W.: Phase field method for simulating the brittle fracture of fiber reinforced composites. Eng. Fract. Mech. 211, 321–340 (2019)
45.
Zurück zum Zitat Pham, K., Amor, H., Marigo, J.J., et al.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20, 618–652 (2011) Pham, K., Amor, H., Marigo, J.J., et al.: Gradient damage models and their use to approximate brittle fracture. Int. J. Damage Mech. 20, 618–652 (2011)
46.
Zurück zum Zitat Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001)MATH Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001)MATH
Metadaten
Titel
Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model
verfasst von
Xingxue Lu
Yuliang Hou
Ying Tie
Cheng Li
Chuanzeng Zhang
Publikationsdatum
12.02.2020
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 2/2020
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-020-00927-6

Weitere Artikel der Ausgabe 2/2020

Acta Mechanica Sinica 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.