Skip to main content

2024 | OriginalPaper | Buchkapitel

Credit Default of P2P Online Loans Based on Logistic Regression Model Under Factor Space Theory Risk Prediction Research

verfasst von : Xiaotong Liu, Haoyu Wang, Kaijie Zhang, Kaile Lin, Qiufeng Shi, Fanhui Zeng

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

P2P, as the most representative online lending platform with a long history of personal credit development, can provide powerful data support for exploring the problem of personal credit default risk, and Logistic Regression plays an important role in machine learning, and the current research on Logistic Regression mainly stays at the application level. Therefore, based on the Factor Space theory to further deepen the interpretation of Logistic Regression, explore the obvious and hidden relationship of the factors behind it, and give a reasonable expression of Logistic Regression from the perspective of the obvious and hidden factors, take the U.S. lending club as an example, choose the lender information data of the whole year of 2019, and establish the P2P online credit default Logistic Regression prediction model. Considering that the conditional factors contain multiple value states, the One-Hot idea is introduced to improve the precision of the algorithm. The accuracy, recall and other evaluation indexes are chosen to compare and analyse the prediction effect of the model. The results of the model show that Logistic Regression can effectively predict the credit default risk of personal credit, and also provide a more in-depth explanation for the generation of personal credit default risk in the context of new personal loans.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Empirical research on bank credit card default based on data mining. Lanzhou University, Lanzhou (2018) Empirical research on bank credit card default based on data mining. Lanzhou University, Lanzhou (2018)
2.
Zurück zum Zitat Zhao, Q.: Research on the accuracy of bank credit card customer default probability prediction based on data mining technology. Henan University, Kaifeng (2019) Zhao, Q.: Research on the accuracy of bank credit card customer default probability prediction based on data mining technology. Henan University, Kaifeng (2019)
3.
Zurück zum Zitat Du, Y.: Research on credit card consumer market segmentation. Beijing Institute of Technology, Beijing (2014) Du, Y.: Research on credit card consumer market segmentation. Beijing Institute of Technology, Beijing (2014)
4.
Zurück zum Zitat Wang, P.: Factor space-mathematical basis of mechanism based artificial intelligence theory. CAAI Trans. Intell. Syst. 13(1), 37–54 (2018)MathSciNet Wang, P.: Factor space-mathematical basis of mechanism based artificial intelligence theory. CAAI Trans. Intell. Syst. 13(1), 37–54 (2018)MathSciNet
5.
Zurück zum Zitat Noble, W.S.: What is a support vector machine. Nat. Biotechnol. 24(1:2), 1:565–1:567 (2006) Noble, W.S.: What is a support vector machine. Nat. Biotechnol. 24(1:2), 1:565–1:567 (2006)
6.
Zurück zum Zitat Wang, P., Liu, H.: Factor Space and Artificial Intelligence. Beijing University of Posts and Telecommunications Press, Beijing (2021) Wang, P., Liu, H.: Factor Space and Artificial Intelligence. Beijing University of Posts and Telecommunications Press, Beijing (2021)
7.
Zurück zum Zitat Wang, P., Guo, S., Bao, Y., et al.: Causality analysis in factor spaces, 33(7), 865–870 (2014) Wang, P., Guo, S., Bao, Y., et al.: Causality analysis in factor spaces, 33(7), 865–870 (2014)
8.
Zurück zum Zitat Wang, H., Wang, P., Guo, S.: Improved factor analysis on factor space, (4), 539–544 (2015) Wang, H., Wang, P., Guo, S.: Improved factor analysis on factor space, (4), 539–544 (2015)
9.
Zurück zum Zitat Liu, H., Hao, C., Fu, G.: Study on factor space-based prediction method of coal and gas outburst. Sci. Technol. 27(4), 354–358 (2017) Liu, H., Hao, C., Fu, G.: Study on factor space-based prediction method of coal and gas outburst. Sci. Technol. 27(4), 354–358 (2017)
Metadaten
Titel
Credit Default of P2P Online Loans Based on Logistic Regression Model Under Factor Space Theory Risk Prediction Research
verfasst von
Xiaotong Liu
Haoyu Wang
Kaijie Zhang
Kaile Lin
Qiufeng Shi
Fanhui Zeng
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_30