Skip to main content
Erschienen in: Journal of Materials Science 8/2016

04.01.2016 | Original Paper

Creep behavior of nanocrystalline Au films as a function of temperature

verfasst von: Nikhil Karanjgaokar, Ioannis Chasiotis

Erschienen in: Journal of Materials Science | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Freestanding nanocrystalline Au films, subjected to nominally elastic loads at 25–110 °C, demonstrated high primary (10−7–10−4 s−1) and steady-state creep rates (10−8–10−5 s−1). The deformation mechanisms for creep were strongly temperature dependent: grain boundary sliding-based creep dominated at room temperature and 50 °C, while the contribution of dislocation-mediated creep increased at 80 and 110 °C. The effect of applied stress on primary and steady-state creep strain at different temperatures was captured well by a non-linear model that was based on the kinetics of thermal activation. Multi-cycle creep experiments showed that at room temperature virtually all the primary strain accumulated during each forward creep cycle was recovered upon complete unloading. As the contribution of dislocation-mediated creep increased with temperature, the ratio of strain recovery to primary strain accumulated during each cycle was reduced due to the accumulation of plastic strain at higher temperatures. Notably, at all temperatures, the steady-state creep rate decreased after the first creep cycle. Moreover, the entire creep response remained virtually unchanged in all subsequent cycles, which implies that the first creep cycle resulted in mechanical annealing. This conclusion was further supported by calculations of the activation entropy: A reduction in its magnitude between the first and all subsequent creep cycles at all temperatures pointed out to mechanical annealing of initial material defects during the first loading cycle. The negative values of the calculated activation entropy indicated that entropy changes due to annihilation of defects-dominated entropy changes associated with the generation of new defects. Finally, the activation entropy for steady-state creep was temperature insensitive, but increased with stress, which is consistent with an increase in defect generation at higher stresses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hsu H, Peroulis D (2010) A viscoelastic-aware experimentally-derived model for analog RF MEMS varactors. In: 2010 IEEE 23rd international conference micro electro mechanical systems, pp 783–786 Hsu H, Peroulis D (2010) A viscoelastic-aware experimentally-derived model for analog RF MEMS varactors. In: 2010 IEEE 23rd international conference micro electro mechanical systems, pp 783–786
2.
Zurück zum Zitat Jonnalagadda KN, Chasiotis I, Yagnamurthy S et al (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35CrossRef Jonnalagadda KN, Chasiotis I, Yagnamurthy S et al (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35CrossRef
3.
Zurück zum Zitat Meyers M, Mishra A, Benson D (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef Meyers M, Mishra A, Benson D (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556CrossRef
4.
Zurück zum Zitat Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774CrossRef Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774CrossRef
5.
Zurück zum Zitat Chasiotis I, Bateson C, Timpano K et al (2007) Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515:3183–3189CrossRef Chasiotis I, Bateson C, Timpano K et al (2007) Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515:3183–3189CrossRef
6.
Zurück zum Zitat Wei Q, Cheng S, Ramesh K, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A 381:71–79CrossRef Wei Q, Cheng S, Ramesh K, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A 381:71–79CrossRef
7.
Zurück zum Zitat Emery R (2003) Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater 51:2079–2087CrossRef Emery R (2003) Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater 51:2079–2087CrossRef
8.
Zurück zum Zitat Wang L, Prorok BCCB (2008) Characterization of the strain rate dependent behavior of nanocrystalline gold films. J Mater Res 23:55–65CrossRef Wang L, Prorok BCCB (2008) Characterization of the strain rate dependent behavior of nanocrystalline gold films. J Mater Res 23:55–65CrossRef
9.
Zurück zum Zitat Jonnalagadda K, Karanjgaokar N, Chasiotis I et al (2010) Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater 58:4674–4684CrossRef Jonnalagadda K, Karanjgaokar N, Chasiotis I et al (2010) Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater 58:4674–4684CrossRef
10.
Zurück zum Zitat Wei Y, Bower AF, Gao H (2008) Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater 56:1741–1752CrossRef Wei Y, Bower AF, Gao H (2008) Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater 56:1741–1752CrossRef
11.
Zurück zum Zitat Padilla HA, Boyce BL (2010) A review of fatigue behavior in nanocrystalline metals. Exp Mech 50:5–23CrossRef Padilla HA, Boyce BL (2010) A review of fatigue behavior in nanocrystalline metals. Exp Mech 50:5–23CrossRef
12.
Zurück zum Zitat Yamakov V, Wolf D, Salazar M et al (2001) Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 49:2713–2722CrossRef Yamakov V, Wolf D, Salazar M et al (2001) Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 49:2713–2722CrossRef
13.
Zurück zum Zitat Li JCM (1960) The interaction of parallel edge dislocations with a simple tilt dislocation wall. Acta Metall 8:296–311CrossRef Li JCM (1960) The interaction of parallel edge dislocations with a simple tilt dislocation wall. Acta Metall 8:296–311CrossRef
14.
Zurück zum Zitat Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679CrossRef Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679CrossRef
15.
Zurück zum Zitat Ashby M, Verrall R (1973) Diffusion-accommodated flow and superplasticity. Acta Metall 21:149–163CrossRef Ashby M, Verrall R (1973) Diffusion-accommodated flow and superplasticity. Acta Metall 21:149–163CrossRef
16.
Zurück zum Zitat Gifkins RC, Snowden KU (1966) Mechanism for “Viscous” grain-boundary sliding. Nature 212:916–917CrossRef Gifkins RC, Snowden KU (1966) Mechanism for “Viscous” grain-boundary sliding. Nature 212:916–917CrossRef
17.
Zurück zum Zitat Budke E, Herzig C, Prokofjev SI, Shvindlerman LS (1998) Study of grain-boundary diffusion of Au in copper within ∑5 misorientation range in the context of structure of grain boundaries. Defect Diffus Forum 156:21–34CrossRef Budke E, Herzig C, Prokofjev SI, Shvindlerman LS (1998) Study of grain-boundary diffusion of Au in copper within ∑5 misorientation range in the context of structure of grain boundaries. Defect Diffus Forum 156:21–34CrossRef
18.
Zurück zum Zitat Kumar K, Suresh S, Chisholm M, Horton J (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405CrossRef Kumar K, Suresh S, Chisholm M, Horton J (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405CrossRef
19.
Zurück zum Zitat Cai B, Kong Q, Lu L, Lu K (2000) Low temperature creep of nanocrystalline pure copper. Mater Sci Eng A 286:188–192CrossRef Cai B, Kong Q, Lu L, Lu K (2000) Low temperature creep of nanocrystalline pure copper. Mater Sci Eng A 286:188–192CrossRef
20.
Zurück zum Zitat Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2:1113–1127CrossRef Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2:1113–1127CrossRef
21.
Zurück zum Zitat Harris K, King A (1998) Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater 46:6195–6203CrossRef Harris K, King A (1998) Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater 46:6195–6203CrossRef
22.
Zurück zum Zitat Wang N, Wang Z, Aust K, Erb U (1997) Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater Sci Eng A 237:150–158CrossRef Wang N, Wang Z, Aust K, Erb U (1997) Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater Sci Eng A 237:150–158CrossRef
23.
Zurück zum Zitat Cai B (2001) Creep behavior of cold-rolled nanocrystalline pure copper. Scr Mater 45:1407–1413CrossRef Cai B (2001) Creep behavior of cold-rolled nanocrystalline pure copper. Scr Mater 45:1407–1413CrossRef
24.
Zurück zum Zitat Yagi N, Rikukawa A, Mizubayashi H, Tanimoto H (2006) Experimental tests of the elementary mechanism responsible for creep deformation in nanocrystalline gold. Phys Rev B 74:144105CrossRef Yagi N, Rikukawa A, Mizubayashi H, Tanimoto H (2006) Experimental tests of the elementary mechanism responsible for creep deformation in nanocrystalline gold. Phys Rev B 74:144105CrossRef
25.
Zurück zum Zitat Langdon TG (1970) Grain boundary sliding as a deformation mechanism during creep. Philos Mag 22:689–700CrossRef Langdon TG (1970) Grain boundary sliding as a deformation mechanism during creep. Philos Mag 22:689–700CrossRef
26.
Zurück zum Zitat Wang Y-J, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 84:1–7 Wang Y-J, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 84:1–7
27.
Zurück zum Zitat Nabarro FRN (1948) Deformation of crystals by the motion of single ions. In: Report of a conference on the strength of solids, Phys. Soc. London, pp 75–90 Nabarro FRN (1948) Deformation of crystals by the motion of single ions. In: Report of a conference on the strength of solids, Phys. Soc. London, pp 75–90
28.
Zurück zum Zitat Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445CrossRef Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445CrossRef
29.
Zurück zum Zitat Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Metall 23:1679–1683CrossRef Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Metall 23:1679–1683CrossRef
30.
Zurück zum Zitat Fougere GE, Weertman JR, Siegel RW, Kim S (1992) Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr Metall Mater 26:1879–1883CrossRef Fougere GE, Weertman JR, Siegel RW, Kim S (1992) Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr Metall Mater 26:1879–1883CrossRef
31.
Zurück zum Zitat Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626CrossRef Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626CrossRef
33.
Zurück zum Zitat Yan X, Brown WL, Li Y et al (2009) Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J Microelectromech Syst 18:570–576CrossRef Yan X, Brown WL, Li Y et al (2009) Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J Microelectromech Syst 18:570–576CrossRef
34.
Zurück zum Zitat Karanjgaokar NJ, Oh C-S, Lambros J, Chasiotis I (2012) Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate. Acta Mater 60:5352–5361CrossRef Karanjgaokar NJ, Oh C-S, Lambros J, Chasiotis I (2012) Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate. Acta Mater 60:5352–5361CrossRef
35.
Zurück zum Zitat Sim G-D, Vlassak JJ (2014) High-temperature tensile behavior of freestanding Au thin films. Scr Mater 75:34–37CrossRef Sim G-D, Vlassak JJ (2014) High-temperature tensile behavior of freestanding Au thin films. Scr Mater 75:34–37CrossRef
36.
Zurück zum Zitat Wang C, Zhang M, Nieh T (2009) Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J Phys D Appl 42:115405CrossRef Wang C, Zhang M, Nieh T (2009) Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J Phys D Appl 42:115405CrossRef
37.
Zurück zum Zitat Chang S, Lee Y, Chang T (2006) Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater Sci Eng A 423:52–56CrossRef Chang S, Lee Y, Chang T (2006) Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater Sci Eng A 423:52–56CrossRef
38.
Zurück zum Zitat Bhakhri V, Klassen R (2006) The depth dependence of the indentation creep of polycrystalline gold at 300K. Scr Mater 55:395–398CrossRef Bhakhri V, Klassen R (2006) The depth dependence of the indentation creep of polycrystalline gold at 300K. Scr Mater 55:395–398CrossRef
39.
Zurück zum Zitat Hyun S, Brown WL, Vinci RP (2003) Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl Phys Lett 83:4411–4413CrossRef Hyun S, Brown WL, Vinci RP (2003) Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl Phys Lett 83:4411–4413CrossRef
40.
Zurück zum Zitat Kalkman AJ, Verbruggen AH, Janssen GCAM, Radelaar S (2002) Transient creep in free-standing thin polycrystalline aluminum films. J Appl Phys 92:4968CrossRef Kalkman AJ, Verbruggen AH, Janssen GCAM, Radelaar S (2002) Transient creep in free-standing thin polycrystalline aluminum films. J Appl Phys 92:4968CrossRef
41.
Zurück zum Zitat Merle B, Cassel D, Goken M (2015) Time-dependent deformation behavior of freestanding and SiNx -supported gold thin films investigated by bulge tests. J Mater Res 30:2161–2169CrossRef Merle B, Cassel D, Goken M (2015) Time-dependent deformation behavior of freestanding and SiNx -supported gold thin films investigated by bulge tests. J Mater Res 30:2161–2169CrossRef
42.
Zurück zum Zitat Brotzen F, Rosenmayer C, Cofer C, Gale R (1990) Creep of thin metallic films. Vacuum 41:1287–1290CrossRef Brotzen F, Rosenmayer C, Cofer C, Gale R (1990) Creep of thin metallic films. Vacuum 41:1287–1290CrossRef
43.
Zurück zum Zitat Guo NN, Zhang JY, Cheng PM et al (2013) Room temperature creep behavior of free-standing Cu films with bimodal grain size distribution. Scr Mater 68:849–852CrossRef Guo NN, Zhang JY, Cheng PM et al (2013) Room temperature creep behavior of free-standing Cu films with bimodal grain size distribution. Scr Mater 68:849–852CrossRef
44.
Zurück zum Zitat Wang B, Idrissi H, Galceran M, Colla MS, Turner S, Hui S, Raskin JP, Pardoen T, Godet S, Schryvers D (2012) Advanced TEM investigation of the plasticity mechanisms in nanocrystalline freestanding palladium films with nanoscale twins. Int J Plast 37:140–156CrossRef Wang B, Idrissi H, Galceran M, Colla MS, Turner S, Hui S, Raskin JP, Pardoen T, Godet S, Schryvers D (2012) Advanced TEM investigation of the plasticity mechanisms in nanocrystalline freestanding palladium films with nanoscale twins. Int J Plast 37:140–156CrossRef
45.
Zurück zum Zitat Zhang K, Weertman JR, Eastman JA (2004) The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl Phys Lett 85:5197–5199CrossRef Zhang K, Weertman JR, Eastman JA (2004) The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl Phys Lett 85:5197–5199CrossRef
46.
Zurück zum Zitat Liu Y, Huang C, Bei H et al (2012) Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys. Mater Lett 70:26–29CrossRef Liu Y, Huang C, Bei H et al (2012) Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys. Mater Lett 70:26–29CrossRef
47.
Zurück zum Zitat Tanimoto H, Sakai S, Mizubayashi H (2004) Anelasticity of nanocrystalline metals. Mater Sci Eng A 370:135–141CrossRef Tanimoto H, Sakai S, Mizubayashi H (2004) Anelasticity of nanocrystalline metals. Mater Sci Eng A 370:135–141CrossRef
48.
Zurück zum Zitat Wang CL, Lai YH, Huang JC, Nieh TG (2010) Creep of nanocrystalline nickel: a direct comparison between uniaxial and nanoindentation creep. Scr Mater 62:175–178CrossRef Wang CL, Lai YH, Huang JC, Nieh TG (2010) Creep of nanocrystalline nickel: a direct comparison between uniaxial and nanoindentation creep. Scr Mater 62:175–178CrossRef
49.
Zurück zum Zitat Gollapudi S, Rajulapati KV, Charit I et al (2010) Creep in nanocrystalline materials: role of stress assisted grain growth. Mater Sci Eng A 527:5773–5781CrossRef Gollapudi S, Rajulapati KV, Charit I et al (2010) Creep in nanocrystalline materials: role of stress assisted grain growth. Mater Sci Eng A 527:5773–5781CrossRef
50.
Zurück zum Zitat Yin WM, Whang SHH (2005) The creep and fracture in nanostructured metals and alloys. JOM J Miner Met Mater Soc 57:63–70CrossRef Yin WM, Whang SHH (2005) The creep and fracture in nanostructured metals and alloys. JOM J Miner Met Mater Soc 57:63–70CrossRef
51.
Zurück zum Zitat Karanjgaokar N, Stump F, Geubelle P, Chasiotis I (2013) A thermally activated model for room temperature creep in nanocrystalline Au films at intermediate stresses. Scr Mater 68:551–554CrossRef Karanjgaokar N, Stump F, Geubelle P, Chasiotis I (2013) A thermally activated model for room temperature creep in nanocrystalline Au films at intermediate stresses. Scr Mater 68:551–554CrossRef
52.
Zurück zum Zitat Karanjgaokar NJ, Oh C, Chasiotis I (2010) Microscale experiments at elevated temperatures evaluated with digital image correlation. Exp Mech 51:609–618CrossRef Karanjgaokar NJ, Oh C, Chasiotis I (2010) Microscale experiments at elevated temperatures evaluated with digital image correlation. Exp Mech 51:609–618CrossRef
53.
Zurück zum Zitat Hertzberg RW, Vinci RP, Hertzberg JL (2012) Deformation and fracture mechanics of engineering materials, 5th edn. Wiley, New York Hertzberg RW, Vinci RP, Hertzberg JL (2012) Deformation and fracture mechanics of engineering materials, 5th edn. Wiley, New York
54.
Zurück zum Zitat Blum W, Li Y (2007) Flow stress and creep rate of nanocrystalline Ni. Scr Mater 57:429–431CrossRef Blum W, Li Y (2007) Flow stress and creep rate of nanocrystalline Ni. Scr Mater 57:429–431CrossRef
55.
Zurück zum Zitat Kottada RS, Chokshi AH (2005) Low temperature compressive creep in electrodeposited nanocrystalline nickel. Scr Mater 53:887–892CrossRef Kottada RS, Chokshi AH (2005) Low temperature compressive creep in electrodeposited nanocrystalline nickel. Scr Mater 53:887–892CrossRef
56.
Zurück zum Zitat McLean M, Brown WL, Vinci RP (2010) Temperature-dependent viscoelasticity in thin Au films and consequences for MEMS devices. J Microelectromech Syst 19:1299–1308CrossRef McLean M, Brown WL, Vinci RP (2010) Temperature-dependent viscoelasticity in thin Au films and consequences for MEMS devices. J Microelectromech Syst 19:1299–1308CrossRef
57.
Zurück zum Zitat Wang B, Haque MA (2014) Low temperature viscoelasticity in nanocrystalline nickel films. Mater Lett 118:59–61CrossRef Wang B, Haque MA (2014) Low temperature viscoelasticity in nanocrystalline nickel films. Mater Lett 118:59–61CrossRef
58.
Zurück zum Zitat Shan ZW, Mishra RK, Syed Asif SA et al (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119CrossRef Shan ZW, Mishra RK, Syed Asif SA et al (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119CrossRef
59.
Zurück zum Zitat Rajagopalan J, Han JH, Saif MT (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315:1831–1834CrossRef Rajagopalan J, Han JH, Saif MT (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315:1831–1834CrossRef
60.
Zurück zum Zitat Rajagopalan J, Han JH, Saif MT (2008) On plastic strain recovery in freestanding nanocrystalline metal thin films. Scr Mater 59:921–926CrossRef Rajagopalan J, Han JH, Saif MT (2008) On plastic strain recovery in freestanding nanocrystalline metal thin films. Scr Mater 59:921–926CrossRef
61.
Zurück zum Zitat Jennings AT, Gross C, Greer F, Aitken ZH, Lee S-W, Weinberger CR, Greer JR (2012) Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater 60:3444–3455CrossRef Jennings AT, Gross C, Greer F, Aitken ZH, Lee S-W, Weinberger CR, Greer JR (2012) Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater 60:3444–3455CrossRef
62.
Zurück zum Zitat Bernal RA, Aghaei A, Lee S et al (2015) Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett 15:139–146CrossRef Bernal RA, Aghaei A, Lee S et al (2015) Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett 15:139–146CrossRef
63.
Zurück zum Zitat Xiang X, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54:5449–5460CrossRef Xiang X, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54:5449–5460CrossRef
64.
Zurück zum Zitat Wei X, Kysar JW (2011) Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater 59:3937–3945CrossRef Wei X, Kysar JW (2011) Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater 59:3937–3945CrossRef
65.
Zurück zum Zitat Wei Y, Bower AF, Gao H (2007) Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater 57:933–936CrossRef Wei Y, Bower AF, Gao H (2007) Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater 57:933–936CrossRef
66.
Zurück zum Zitat Wei Y, Bower AF, Gao H (2008) Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. J Mech Phys Solids 56:1460–1483CrossRef Wei Y, Bower AF, Gao H (2008) Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. J Mech Phys Solids 56:1460–1483CrossRef
67.
Zurück zum Zitat Davoudi KM, Nicola L, Vlassak JJ (2014) Bauschinger effect in thin metal films: discrete dislocation dynamics study. J Appl Phys 115:013507CrossRef Davoudi KM, Nicola L, Vlassak JJ (2014) Bauschinger effect in thin metal films: discrete dislocation dynamics study. J Appl Phys 115:013507CrossRef
68.
Zurück zum Zitat Dushman S, Dunbar LW, Huthsteiner H (1944) Creep of Metals. J Appl Phys 15:108CrossRef Dushman S, Dunbar LW, Huthsteiner H (1944) Creep of Metals. J Appl Phys 15:108CrossRef
69.
Zurück zum Zitat Wang YJ, Ishii A, Ogata S (2013) Entropic effect on creep in nanocrystalline metals. Acta Mater 61:3866–3871CrossRef Wang YJ, Ishii A, Ogata S (2013) Entropic effect on creep in nanocrystalline metals. Acta Mater 61:3866–3871CrossRef
70.
Zurück zum Zitat Gupta D (1973) Grain-boundary self-diffusion in Au by Ar sputtering technique. J Appl Phys 44:4455CrossRef Gupta D (1973) Grain-boundary self-diffusion in Au by Ar sputtering technique. J Appl Phys 44:4455CrossRef
71.
Zurück zum Zitat Lin T-S, Chung Y-W (1989) Measurement of the activation energy for surface diffusion in gold by scanning tunneling microscopy. Surf Sci 207:539–546CrossRef Lin T-S, Chung Y-W (1989) Measurement of the activation energy for surface diffusion in gold by scanning tunneling microscopy. Surf Sci 207:539–546CrossRef
72.
Zurück zum Zitat Makin SM, Rowe AH, Leclaire AD (1957) Self-diffusion in gold. Proc Phys Soc Sect B 70:545–552CrossRef Makin SM, Rowe AH, Leclaire AD (1957) Self-diffusion in gold. Proc Phys Soc Sect B 70:545–552CrossRef
73.
Zurück zum Zitat Wang YJ, Gao GJJ, Ogata S (2013) Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys Rev B 88:1–7 Wang YJ, Gao GJJ, Ogata S (2013) Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys Rev B 88:1–7
Metadaten
Titel
Creep behavior of nanocrystalline Au films as a function of temperature
verfasst von
Nikhil Karanjgaokar
Ioannis Chasiotis
Publikationsdatum
04.01.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 8/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9687-4

Weitere Artikel der Ausgabe 8/2016

Journal of Materials Science 8/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.