Skip to main content
Erschienen in: International Journal of Plastics Technology 2/2018

14.11.2018 | Review Article

Critical review on agrowaste cellulose applications for biopolymers

verfasst von: Tshwafo Elias Motaung, Linda Zikhona Linganiso

Erschienen in: International Journal of Plastics Technology | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The usage and application of agricultural biomass products in development of polymer nanocomposites is increasing due to the demand for green materials, depletion of natural resources and awareness of environmental issues. Lignocellulosic agricultural fibers such as sugarcane bagasse, rice husk, sorghum waste and maize stalk are increasingly investigated as an alternative to conventional and inorganic fillers such as carbon fiber, glass fiber and silica. This review provides an overview on the emerging cellulose nanomaterials, focusing on extraction procedures from lignocellulosic biomass, and on modification developments and applications of these materials in polymer matrices. In this regard, cellulose nanocrystals, cellulose nanofibrils and bacterial nanocellulose derived from biomass cellulose, the most abundant biopolymer, are increasingly applied to nanocomposites. Different range of biodegradable polymer matrices are described in this review (polylactide, polycaprolactone, and polyhydroxybutyrate) because of more eco-friendliness from their origin in contrast to the fully petroleum polymers in production of biopolymers nanocomposites. This family of composites offer a green alternative to synthetic polymers and represents the best polymeric substitutes for various (petro) polymers because of their renewability, biodegradability, biocompatibility and good thermomechanical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542 Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542
2.
Zurück zum Zitat Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63 Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63
3.
Zurück zum Zitat Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcements. Compos Sci Technol 66:2187–2196 Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcements. Compos Sci Technol 66:2187–2196
4.
Zurück zum Zitat Ceraulo M, Morreale M, Botta L, Mistretta MC, Scaffaro R (2015) Prediction of the morphology of polymer-clay nanocomposites. Polym Test 4:149–156 Ceraulo M, Morreale M, Botta L, Mistretta MC, Scaffaro R (2015) Prediction of the morphology of polymer-clay nanocomposites. Polym Test 4:149–156
5.
Zurück zum Zitat Dintcheva NT, Al-Malaika S, Morici E (2015) Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites. Polym Degrad Stab 122:88–101 Dintcheva NT, Al-Malaika S, Morici E (2015) Novel organo-modifier for thermally-stable polymer-layered silicate nanocomposites. Polym Degrad Stab 122:88–101
6.
Zurück zum Zitat Shah KJ, Shukla AD, Shah DO, Imae T (2016) Effect of organic modifiers on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polym 97:525–532 Shah KJ, Shukla AD, Shah DO, Imae T (2016) Effect of organic modifiers on dispersion of organoclay in polymer nanocomposites to improve mechanical properties. Polym 97:525–532
7.
Zurück zum Zitat Goyal S, Goyal GK (2012) Nanotechnology in food packaging—a critical review. Russ J Agric Soc-Econ Sci 10:14–24 Goyal S, Goyal GK (2012) Nanotechnology in food packaging—a critical review. Russ J Agric Soc-Econ Sci 10:14–24
8.
Zurück zum Zitat Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf 84:158–164 Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf 84:158–164
9.
Zurück zum Zitat Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C 47:8–16 Alshatwi AA, Athinarayanan J, Periasamy VS (2015) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C 47:8–16
10.
Zurück zum Zitat Rapacz-Kmita A, Stodolak-Zych E, Szaraniec B, Gajek M, Dudek P (2015) Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites. Mater Lett 146:73–76 Rapacz-Kmita A, Stodolak-Zych E, Szaraniec B, Gajek M, Dudek P (2015) Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites. Mater Lett 146:73–76
11.
Zurück zum Zitat Premalal HGB, Ismail H, Baharin A (2002) Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21:833–839 Premalal HGB, Ismail H, Baharin A (2002) Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 21:833–839
12.
Zurück zum Zitat Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Thermo-mechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay. Compos Part A Appl Sci Manuf 81:193–201 Battegazzore D, Salvetti O, Frache A, Peduto N, De Sio A, Marino F (2016) Thermo-mechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay. Compos Part A Appl Sci Manuf 81:193–201
13.
Zurück zum Zitat Chand N, Jhod BD (2008) Mechanical, electrical and thermal properties of maleic anhydride modified rice husk filled PVC composites. Bio Resour 3(4):1228–1243 Chand N, Jhod BD (2008) Mechanical, electrical and thermal properties of maleic anhydride modified rice husk filled PVC composites. Bio Resour 3(4):1228–1243
14.
Zurück zum Zitat Chigondo F, Shoko P, Nyamunda BC, Guyo U, Moyo M (2013) Maize stalk as reinforcement in natural rubber composites. Int J Sci Technol Res 2(6):2277–8616 Chigondo F, Shoko P, Nyamunda BC, Guyo U, Moyo M (2013) Maize stalk as reinforcement in natural rubber composites. Int J Sci Technol Res 2(6):2277–8616
15.
Zurück zum Zitat Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Proc 34:664–672 Sujaritjun W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Mechanical property of surface modified natural fiber reinforced PLA biocomposites. Energy Proc 34:664–672
16.
Zurück zum Zitat Faruk O, Sain M (2014) Biofiber reinforcement in composites materials. Woodhead Publ Ser 51:454–487 Faruk O, Sain M (2014) Biofiber reinforcement in composites materials. Woodhead Publ Ser 51:454–487
17.
Zurück zum Zitat Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808 Goriparthi BK, Suman KNS, Rao NM (2012) Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos Part A Appl Sci Manuf 43:1800–1808
18.
Zurück zum Zitat Wu F, Zhang S, Chen Z, Zhang B, Yang W, Liu Z, Yang M (2016) Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer 90:264–275 Wu F, Zhang S, Chen Z, Zhang B, Yang W, Liu Z, Yang M (2016) Interfacial relaxation mechanisms in polymer nanocomposites through the rheological study on polymer/grafted nanoparticles. Polymer 90:264–275
19.
Zurück zum Zitat Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos Part B Eng 40:628–632 Threepopnatkul P, Kaerkitcha N, Athipongarporn N (2009) Effect of surface treatment on performance of pineapple leaf fiber-polycarbonate composites. Compos Part B Eng 40:628–632
20.
Zurück zum Zitat Nevárez LM, Casarrubias LB, Canto OS, Celzard A, Fierro V, Gómez RI, Sánchez GG (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86:732–741 Nevárez LM, Casarrubias LB, Canto OS, Celzard A, Fierro V, Gómez RI, Sánchez GG (2011) Biopolymers-based nanocomposites: membranes from propionated lignin and cellulose for water purification. Carbohydr Polym 86:732–741
21.
Zurück zum Zitat Mulinari DR, da Silva MLCP (2008) Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydr Polym 74:617–620 Mulinari DR, da Silva MLCP (2008) Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydr Polym 74:617–620
22.
Zurück zum Zitat Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos Part B Eng 43:2230–2236 Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos Part B Eng 43:2230–2236
23.
Zurück zum Zitat Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32PubMed Zheng Y, Monty J, Linhardt RJ (2015) Polysaccharide-based nanocomposites and their applications. Carbohydr Res 405:23–32PubMed
24.
Zurück zum Zitat Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602 Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602
25.
Zurück zum Zitat Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808 Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8(11):791–808
26.
Zurück zum Zitat Pan H (2011) Synthesis of polymers from organic solvent liquefied biomass: a review. Renew Sustain Energy Rev 15:3454–3463 Pan H (2011) Synthesis of polymers from organic solvent liquefied biomass: a review. Renew Sustain Energy Rev 15:3454–3463
27.
Zurück zum Zitat Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517 Goyal HB, Seal D, Saxena RC (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev 12:504–517
28.
Zurück zum Zitat Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140 Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev 57:1126–1140
29.
Zurück zum Zitat Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76 Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 105:40–76
30.
Zurück zum Zitat Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12:1909–1927 Saxena RC, Seal D, Kumar S, Goyal HB (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12:1909–1927
31.
Zurück zum Zitat Mazumder J, de Lasa HI (2016) Catalytic steam gasification of biomass surrogates: thermodynamics and effect of operating conditions. Chem Eng J 293:232–242 Mazumder J, de Lasa HI (2016) Catalytic steam gasification of biomass surrogates: thermodynamics and effect of operating conditions. Chem Eng J 293:232–242
32.
Zurück zum Zitat Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186 Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P (2009) A review on gasification of biomass. Renew Sustain Energy Rev 13:179–186
33.
Zurück zum Zitat Kemper J (2015) Biomass and carbon dioxide capture and storage: a review. Int J Greenhouse Gas Control 40:401–430 Kemper J (2015) Biomass and carbon dioxide capture and storage: a review. Int J Greenhouse Gas Control 40:401–430
34.
Zurück zum Zitat Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79 Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79
35.
Zurück zum Zitat McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46PubMed McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46PubMed
36.
Zurück zum Zitat Johansson AC, Wiinikka H, Sandstrom L, Marklund M, Ohrman OGW, Narvesjo J (2016) Characterization of pyrolys is products produced from different Nordic biomass types in a cyclone pilot plant. Fuel Process Technol 146:9–16 Johansson AC, Wiinikka H, Sandstrom L, Marklund M, Ohrman OGW, Narvesjo J (2016) Characterization of pyrolys is products produced from different Nordic biomass types in a cyclone pilot plant. Fuel Process Technol 146:9–16
37.
Zurück zum Zitat Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481 Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481
38.
Zurück zum Zitat Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312 Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312
39.
Zurück zum Zitat Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14:919–937 Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14:919–937
40.
Zurück zum Zitat Corrales RC, Mendes FMT, Perrone CC, Sant’Anna C, de Souza W, Abud Y, da Silva Bon EP, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 2012:5–36 Corrales RC, Mendes FMT, Perrone CC, Sant’Anna C, de Souza W, Abud Y, da Silva Bon EP, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 2012:5–36
41.
Zurück zum Zitat Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2006) Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos Struct 72:429–437 Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2006) Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos Struct 72:429–437
42.
Zurück zum Zitat Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res 342:919–926PubMed Liu CF, Sun RC, Zhang AP, Ren JL, Wang XA, Qin MH, Chao ZN, Luo W (2007) Homogeneous modification of sugarcane bagasse cellulose with succinic anhydride using a ionic liquid as reaction medium. Carbohydr Res 342:919–926PubMed
43.
Zurück zum Zitat Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371 Abdel-Halim ES (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371
44.
Zurück zum Zitat Abdelwahab NA, Shukry N (2015) Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr Polym 115:276–284PubMed Abdelwahab NA, Shukry N (2015) Synthesis, characterization and antimicrobial properties of grafted sugarcane bagasse/silver nanocomposites. Carbohydr Polym 115:276–284PubMed
45.
Zurück zum Zitat Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442 Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibers. Mater Des 47:424–442
46.
Zurück zum Zitat Mounika M, DrK Ravindrab (2015) Characterization of nanocomposites reinforced with cellulose whiskers: a review. Mater Today Proc 2:3610–3618 Mounika M, DrK Ravindrab (2015) Characterization of nanocomposites reinforced with cellulose whiskers: a review. Mater Today Proc 2:3610–3618
47.
Zurück zum Zitat Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339 Sun JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab 84:331–339
48.
Zurück zum Zitat Jayapal N, Samanta AK, Kolte AT, Senani S, Sridhar M, Suresh KP, Sampath KT (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crops Prod 42:14–24 Jayapal N, Samanta AK, Kolte AT, Senani S, Sridhar M, Suresh KP, Sampath KT (2013) Value addition to sugarcane bagasse: xylan extraction and its process optimization for xylooligosaccharides production. Ind Crops Prod 42:14–24
49.
Zurück zum Zitat Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441 Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441
50.
Zurück zum Zitat John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364 John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364
51.
Zurück zum Zitat Yunpu W, Leilei D, Liangliang F, Shaoqi S, Yuhuam L, Ruan R (2016) Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrolysis 119:104–113 Yunpu W, Leilei D, Liangliang F, Shaoqi S, Yuhuam L, Ruan R (2016) Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrolysis 119:104–113
52.
Zurück zum Zitat Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502 Nair V, Panigrahy A, Vinu R (2014) Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem Eng J 254:491–502
53.
Zurück zum Zitat Mathews SL, Grunden AM, Pawlak J (2016) Degradation of lignocellulose and lignin Paenibacillus glucanolyticus. Int Biodeterior Biodegrad 110:79–86 Mathews SL, Grunden AM, Pawlak J (2016) Degradation of lignocellulose and lignin Paenibacillus glucanolyticus. Int Biodeterior Biodegrad 110:79–86
54.
Zurück zum Zitat Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139 Yang W, Fortunati E, Dominici F, Kenny JM, Puglia D (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139
55.
Zurück zum Zitat Shalwan A, Yousif BF (2013) In State of Art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 44:14–24 Shalwan A, Yousif BF (2013) In State of Art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 44:14–24
56.
Zurück zum Zitat Youssef AM, El-Gendy A, Kamel S (2015) Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater Chem Phys 152:26–33 Youssef AM, El-Gendy A, Kamel S (2015) Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater Chem Phys 152:26–33
57.
Zurück zum Zitat Parida C, Das SC, Dash SK (2012) Mechanical analysis of bio nanocomposite prepared from Luffa cylindrical. Proc Chem 4:53–59 Parida C, Das SC, Dash SK (2012) Mechanical analysis of bio nanocomposite prepared from Luffa cylindrical. Proc Chem 4:53–59
58.
Zurück zum Zitat Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B Eng 92:94–132 Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos Part B Eng 92:94–132
59.
Zurück zum Zitat Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25 Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25
60.
Zurück zum Zitat Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behaviour of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28 Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behaviour of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28
61.
Zurück zum Zitat Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596 Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596
62.
Zurück zum Zitat Jawaid M, Abdul-Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–8 Jawaid M, Abdul-Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–8
63.
Zurück zum Zitat Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579 Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579
64.
Zurück zum Zitat Rozman HD, Lee MH, Kumar RN, Abusamah A, Ishak ZAM (2000) The effect of chemical modification of rice husk with glycidyl methacrylate on the mechanical and physical properties of rice husk-polystyrene composites. J Wood Chem Technol 20(1):93–109 Rozman HD, Lee MH, Kumar RN, Abusamah A, Ishak ZAM (2000) The effect of chemical modification of rice husk with glycidyl methacrylate on the mechanical and physical properties of rice husk-polystyrene composites. J Wood Chem Technol 20(1):93–109
65.
Zurück zum Zitat Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMed Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169PubMed
66.
Zurück zum Zitat Lee KY, Bharadia P, Blaker JJ, Bismarck A (2012) Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos Part A Appl Sci Manuf 43:2065–2074 Lee KY, Bharadia P, Blaker JJ, Bismarck A (2012) Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos Part A Appl Sci Manuf 43:2065–2074
67.
Zurück zum Zitat Sawpan MA, Pickering KL, Fernyhough A (2012) Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 43:519–526 Sawpan MA, Pickering KL, Fernyhough A (2012) Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 43:519–526
68.
Zurück zum Zitat Hu RH, Sun MY, Lim JK (2010) Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 31:3167–3173 Hu RH, Sun MY, Lim JK (2010) Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater Des 31:3167–3173
69.
Zurück zum Zitat Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021 Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021
70.
Zurück zum Zitat Szczerbowski D, Pitarelo AP, Filho AZ, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101PubMed Szczerbowski D, Pitarelo AP, Filho AZ, Ramos LP (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101PubMed
71.
Zurück zum Zitat Hemmasi AH, Ghasemi I, Bazyar B, Samariha A (2011) Influence of nanoclay on the physical properties of recycled high-density polyethylene/bagasse nanocomposite. Middle-East J Sci Res 8(3):648–651 Hemmasi AH, Ghasemi I, Bazyar B, Samariha A (2011) Influence of nanoclay on the physical properties of recycled high-density polyethylene/bagasse nanocomposite. Middle-East J Sci Res 8(3):648–651
72.
Zurück zum Zitat Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys 3:187–194 Agunsoye JO, Aigbodion VS (2013) Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys 3:187–194
73.
Zurück zum Zitat Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299 Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299
74.
Zurück zum Zitat Banerjee PN (2014) Isolation and characterisation of hemicelluloses extracted by tteam and alkaline peroxide at different temperatures from sugarcane bagasse. Lignocellulose 3(2):145–154 Banerjee PN (2014) Isolation and characterisation of hemicelluloses extracted by tteam and alkaline peroxide at different temperatures from sugarcane bagasse. Lignocellulose 3(2):145–154
75.
Zurück zum Zitat Luz SM, Goncalves AR, Del’Arco AP Jr (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos Part A Appl Sci Manuf 38:1455–1461 Luz SM, Goncalves AR, Del’Arco AP Jr (2007) Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Compos Part A Appl Sci Manuf 38:1455–1461
76.
Zurück zum Zitat Chen JC, Harrison IR (2002) Modification of polyacrylonite (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide. Carbon 40:25–45 Chen JC, Harrison IR (2002) Modification of polyacrylonite (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethyl formamide. Carbon 40:25–45
77.
Zurück zum Zitat Gilfillan WN, Nguyen DMT, Sopade PA, Doherty WOS (2012) Preparation and characterisation of composites from starch and sugar cane fibre. Ind Crops Prod 40:45–54 Gilfillan WN, Nguyen DMT, Sopade PA, Doherty WOS (2012) Preparation and characterisation of composites from starch and sugar cane fibre. Ind Crops Prod 40:45–54
78.
Zurück zum Zitat Kordkheili HY, Hiziroglu S, Farsi M (2012) Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Mater Des 33:395–398 Kordkheili HY, Hiziroglu S, Farsi M (2012) Some of the physical and mechanical properties of cement composites manufactured from carbon nanotubes and bagasse fiber. Mater Des 33:395–398
79.
Zurück zum Zitat Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Proc Eng 10:2046–2051 Cerqueira EF, Baptista CARP, Mulinari DR (2011) Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Proc Eng 10:2046–2051
80.
Zurück zum Zitat Vilay V, Mariatti M, Taib RM, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638 Vilay V, Mariatti M, Taib RM, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber-reinforced unsaturated polyester composites. Compos Sci Technol 68:631–638
81.
Zurück zum Zitat de Sousa MV, Monteiro SN, d’Almeida JRM (2004) Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse-polyester composites. Polym Test 23:253–258 de Sousa MV, Monteiro SN, d’Almeida JRM (2004) Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse-polyester composites. Polym Test 23:253–258
82.
Zurück zum Zitat Stael GC, Tavares MIB, d’Almeida JRM (2001) Impact behavior of sugarcane bagasse waste-EVA composites. Polym Test 20:869–872 Stael GC, Tavares MIB, d’Almeida JRM (2001) Impact behavior of sugarcane bagasse waste-EVA composites. Polym Test 20:869–872
83.
Zurück zum Zitat Khorami M, Ganjian E (2011) Comparing flexural behaviour of fibre-cement composites reinforced bagasse: wheat and eucalyptus. Constr Build Mater 25:3661–3667 Khorami M, Ganjian E (2011) Comparing flexural behaviour of fibre-cement composites reinforced bagasse: wheat and eucalyptus. Constr Build Mater 25:3661–3667
84.
Zurück zum Zitat Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219 Mulinari DR, Voorwald HJC, Cioffi MOH, da Silva MLCP, da Cruz TG, Saron C (2009) Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Compos Sci Technol 69:214–219
85.
Zurück zum Zitat Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A Appl Sci Manuf 38:1664–1674 Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part A Appl Sci Manuf 38:1664–1674
86.
Zurück zum Zitat Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibers. Carbohydr Polym 118:1–8PubMed Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibers. Carbohydr Polym 118:1–8PubMed
87.
Zurück zum Zitat Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13(8):1360–1385 Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13(8):1360–1385
88.
Zurück zum Zitat Saravana BD, Mohan KGC (2012) Morphological and thermal properties of maize fiber composites. Fiber Polym 13(7):887–893 Saravana BD, Mohan KGC (2012) Morphological and thermal properties of maize fiber composites. Fiber Polym 13(7):887–893
89.
Zurück zum Zitat Luo H, Xiong G, Ma C, Chang P, Yao F, Zhu Y, Zhang C, Wan Y (2014) Mechanical and thermo-mechanical behaviors of sizing treated corn fiber/polylactide composites. Polym Test 39:45–52 Luo H, Xiong G, Ma C, Chang P, Yao F, Zhu Y, Zhang C, Wan Y (2014) Mechanical and thermo-mechanical behaviors of sizing treated corn fiber/polylactide composites. Polym Test 39:45–52
90.
Zurück zum Zitat Wu J, Zhang X, Wan J, Ma F, Tang Y, Zhang X (2011) Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive. Bioresour Technol 102:11258–11261PubMed Wu J, Zhang X, Wan J, Ma F, Tang Y, Zhang X (2011) Production of fiberboard using corn stalk pretreated with white-rot fungus Trametes hirsute by hot pressing without adhesive. Bioresour Technol 102:11258–11261PubMed
92.
Zurück zum Zitat Nourbakhsh A, Ashori A (2010) Wood plastic composites from agro-waste materials: analysis of mechanical properties. Bioresour Technol 101:2525–2528PubMed Nourbakhsh A, Ashori A (2010) Wood plastic composites from agro-waste materials: analysis of mechanical properties. Bioresour Technol 101:2525–2528PubMed
93.
Zurück zum Zitat Panthapulakkal S, Sain M (2007) Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Compos Part A Appl Sci Manuf 38:1445–1454 Panthapulakkal S, Sain M (2007) Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Compos Part A Appl Sci Manuf 38:1445–1454
94.
Zurück zum Zitat Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manag 30:680–684PubMed Ashori A, Nourbakhsh A (2010) Bio-based composites from waste agricultural residues. Waste Manag 30:680–684PubMed
95.
Zurück zum Zitat Foo KY, Hameed BH (2009) Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv Colloid Interface Sci 152:39–47PubMed Foo KY, Hameed BH (2009) Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Adv Colloid Interface Sci 152:39–47PubMed
96.
Zurück zum Zitat Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935 Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA (2015) Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 264:899–935
97.
Zurück zum Zitat Fernandes IJ, Calheiro D, Kieling AG, Moraes CAM, Rocha TLAC, Brehm FA, Modolo RCE (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351–359 Fernandes IJ, Calheiro D, Kieling AG, Moraes CAM, Rocha TLAC, Brehm FA, Modolo RCE (2016) Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel 165:351–359
98.
Zurück zum Zitat Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138 Rosa SML, Rehman N, de Miranda MIG, Nachtigall SMB, Bica CID (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87:1131–1138
99.
Zurück zum Zitat Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwin AA (2005) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41:275–281 Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwin AA (2005) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41:275–281
100.
Zurück zum Zitat Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485 Pode R (2016) Potential applications of rice husk ash waste from rice husk biomass power plant. Renew Sustain Energy Rev 53:1468–1485
101.
Zurück zum Zitat Tolba GMK, Barakat NAM, Bastaweesy AM, Ashour EA, Abdelmoez W, El-Newehy MH, Al-Deyab SS, Kim HK (2015) Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. J Ind Eng Chem 29:134–145 Tolba GMK, Barakat NAM, Bastaweesy AM, Ashour EA, Abdelmoez W, El-Newehy MH, Al-Deyab SS, Kim HK (2015) Effective and highly recyclable nanosilica produced from the rice husk for effective removal of organic dyes. J Ind Eng Chem 29:134–145
102.
Zurück zum Zitat Shukla SK, Nidhi S, Pooja N, Charu A, Silvi MR, Bharadvaja A, Dubey GC (2014) Metal decontamination from chemically modified rice husk film. Adv Mater Lett 5(6):352–355 Shukla SK, Nidhi S, Pooja N, Charu A, Silvi MR, Bharadvaja A, Dubey GC (2014) Metal decontamination from chemically modified rice husk film. Adv Mater Lett 5(6):352–355
103.
Zurück zum Zitat Adam FA, Appaturi JN, Iqbal A (2012) The utilization of rice husk silica as a catalyst: review and recent progress. Catal Today 190:2–14 Adam FA, Appaturi JN, Iqbal A (2012) The utilization of rice husk silica as a catalyst: review and recent progress. Catal Today 190:2–14
104.
Zurück zum Zitat Carmona VB, Oliveir RM, Silva WTL, Mattoso LHC, Marconcini JM (2013) Nanosilica from rice husk: extraction and characterization. Ind Crops Prod 43:291–296 Carmona VB, Oliveir RM, Silva WTL, Mattoso LHC, Marconcini JM (2013) Nanosilica from rice husk: extraction and characterization. Ind Crops Prod 43:291–296
105.
Zurück zum Zitat Prithivirajan R, Jayabal S, Bharathiraja G (2015) Bio-based composites from waste agricultural residues: mechanical and morphological properties. Cellul Chem Technol 49(1):65–68 Prithivirajan R, Jayabal S, Bharathiraja G (2015) Bio-based composites from waste agricultural residues: mechanical and morphological properties. Cellul Chem Technol 49(1):65–68
106.
Zurück zum Zitat Hamid MRY, Ahmad MHAGS (2012) Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and sawdust. Ind Crops Prod 40:96–102 Hamid MRY, Ahmad MHAGS (2012) Effect of antioxidants and fire retardants as mineral fillers on the physical and mechanical properties of high loading hybrid biocomposites reinforced with rice husks and sawdust. Ind Crops Prod 40:96–102
107.
Zurück zum Zitat Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124 Tran TPT, Bénézet JC, Bergeret A (2014) Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod 58:111–124
108.
Zurück zum Zitat Rosa SML, Santos EF (2009) Studies on the properties of rice-husk-filled-PP composites—effect of maleated PP. Mater Res 12(3):333–338 Rosa SML, Santos EF (2009) Studies on the properties of rice-husk-filled-PP composites—effect of maleated PP. Mater Res 12(3):333–338
109.
Zurück zum Zitat Fávaro SL, Lopes MS, Neto AGVC, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos Part A Appl Sci Manuf 41:154–160 Fávaro SL, Lopes MS, Neto AGVC, de Santana RR, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos Part A Appl Sci Manuf 41:154–160
110.
Zurück zum Zitat Teixeira NC, Queiroz VAV, Rocha MC, Amorim ACP, Soares TO, Monteiro MAM, de Menezes CB, Schaffert RU, Garcia MAVT, Junqueira RB (2016) Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retentionin two genotypes. Food Chem 197:291–296 Teixeira NC, Queiroz VAV, Rocha MC, Amorim ACP, Soares TO, Monteiro MAM, de Menezes CB, Schaffert RU, Garcia MAVT, Junqueira RB (2016) Resistant starch content among several sorghum (Sorghum bicolor) genotypes and the effect of heat treatment on resistant starch retentionin two genotypes. Food Chem 197:291–296
111.
Zurück zum Zitat Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456 Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H (2013) Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy 55:449–456
112.
Zurück zum Zitat Pannacci E, Bartolini S (2016) Evaluation of sorghum hybrids for biomass production in central Italy. Biomass Bioenergy 88:135–141 Pannacci E, Bartolini S (2016) Evaluation of sorghum hybrids for biomass production in central Italy. Biomass Bioenergy 88:135–141
113.
Zurück zum Zitat Bakeer B, Taha I, El-Mously H, Shehata SA (2013) On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng J 4:265–271 Bakeer B, Taha I, El-Mously H, Shehata SA (2013) On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng J 4:265–271
114.
Zurück zum Zitat Khazaeian A, Ashori A, Dizaj MY (2015) Department Suitability of sorghum stalk fibers for production of particle board. Carbohydr Polym 120:15–21PubMed Khazaeian A, Ashori A, Dizaj MY (2015) Department Suitability of sorghum stalk fibers for production of particle board. Carbohydr Polym 120:15–21PubMed
115.
Zurück zum Zitat Qi C, Yadama V, Guo K, Wolcott MP (2013) Thermal conductivity of sorghum and sorghum-thermoplastic composite panels. Ind Crops Prod 45:455–460 Qi C, Yadama V, Guo K, Wolcott MP (2013) Thermal conductivity of sorghum and sorghum-thermoplastic composite panels. Ind Crops Prod 45:455–460
116.
Zurück zum Zitat El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167PubMed El Miri N, Abdelouahdi K, Barakat A, Zahouily M, Fihri A, Solhy A, El Achaby M (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167PubMed
117.
Zurück zum Zitat Othman ST (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized Filler. Agric Agric Sci Proc 2:296–303 Othman ST (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized Filler. Agric Agric Sci Proc 2:296–303
118.
Zurück zum Zitat Suprakas SR, Mosto B (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079 Suprakas SR, Mosto B (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079
119.
Zurück zum Zitat Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95 Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95
120.
Zurück zum Zitat Kim S, Xu J, Liu S (2010) Production of biopolymer composites by particle bonding. Compos Part A Appl Sci Manuf 41:146–153 Kim S, Xu J, Liu S (2010) Production of biopolymer composites by particle bonding. Compos Part A Appl Sci Manuf 41:146–153
121.
Zurück zum Zitat Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442 Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:433–442
122.
Zurück zum Zitat Lu Y, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217PubMed Lu Y, Cueva MC, Lara-Curzio E, Ozcan S (2015) Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization. Carbohydr Polym 131:208–217PubMed
123.
Zurück zum Zitat Wang Y, Zhang H, Li M, Cao W, Liu C, Shen C (2015) Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polym Test 41:163–171 Wang Y, Zhang H, Li M, Cao W, Liu C, Shen C (2015) Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polym Test 41:163–171
124.
Zurück zum Zitat Ahmed J, Varshney SK, Zhang JX, Ramaswamy HS (2009) Effect of high pressure treatment on thermal properties of polylactides. J Food Eng 93:308–312 Ahmed J, Varshney SK, Zhang JX, Ramaswamy HS (2009) Effect of high pressure treatment on thermal properties of polylactides. J Food Eng 93:308–312
125.
Zurück zum Zitat Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclere P, Raquez JM, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym 65:9–17 Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclere P, Raquez JM, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polym 65:9–17
126.
Zurück zum Zitat Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab 94:327–338 Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab 94:327–338
127.
Zurück zum Zitat Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng LH, Pilla S (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449 Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng LH, Pilla S (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98:1439–1449
128.
Zurück zum Zitat Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39:875–886 Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A Appl Sci Manuf 39:875–886
129.
Zurück zum Zitat Ding Y, Yao Q, Li W, Schubert DW, Boccaccini AR, Roether JA (2015) The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids Surf B: Biointerfaces 136:93–98PubMed Ding Y, Yao Q, Li W, Schubert DW, Boccaccini AR, Roether JA (2015) The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids Surf B: Biointerfaces 136:93–98PubMed
130.
Zurück zum Zitat D’Amico DA, Manfredi LB, Cyras VP (2012) Crystallization behavior of poly(3-hydroxybutyrate) nanocomposites based on modified clays: effect of organic modifiers. Thermochim Acta 544:47–53 D’Amico DA, Manfredi LB, Cyras VP (2012) Crystallization behavior of poly(3-hydroxybutyrate) nanocomposites based on modified clays: effect of organic modifiers. Thermochim Acta 544:47–53
131.
Zurück zum Zitat Naranjo JM, Cardona CA, Higuita JC (2014) Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Waste Manag 34:2634–2640PubMed Naranjo JM, Cardona CA, Higuita JC (2014) Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Waste Manag 34:2634–2640PubMed
132.
Zurück zum Zitat Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184 Zhijiang C, Guang Y (2011) Optical nanocomposites prepared by incorporating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Mater Lett 65:182–184
133.
Zurück zum Zitat Singh RP, Pandey JK, Rutot D, Degee Ph, Dubois Ph (2003) Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr Res 338:1759–1769PubMed Singh RP, Pandey JK, Rutot D, Degee Ph, Dubois Ph (2003) Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr Res 338:1759–1769PubMed
134.
Zurück zum Zitat Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V (2011) Improvement of tensile properties and tuning of the biodegradation behaviour of polycaprolactone by addition of electrospun fibers. Polym 52:4054–4060 Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V (2011) Improvement of tensile properties and tuning of the biodegradation behaviour of polycaprolactone by addition of electrospun fibers. Polym 52:4054–4060
135.
Zurück zum Zitat Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/grapheme oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050 Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/grapheme oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050
136.
Zurück zum Zitat Mallakpour S, Nouruzi N (2016) Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polym 89:94–101 Mallakpour S, Nouruzi N (2016) Effect of modified ZnO nanoparticles with biosafe molecule on the morphology and physiochemical properties of novel polycaprolactone nanocomposites. Polym 89:94–101
137.
Zurück zum Zitat Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501PubMed Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501PubMed
138.
Zurück zum Zitat Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265PubMed Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265PubMed
139.
Zurück zum Zitat Chandra JCS, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166 Chandra JCS, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166
140.
Zurück zum Zitat Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616PubMed Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616PubMed
141.
Zurück zum Zitat Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z (2015) Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites. Int J Biol Macromol 81:91–99PubMed Arjmandi R, Hassan A, Haafiz MKM, Zakaria Z (2015) Partial replacement effect of montmorillonite with cellulose nanowhiskers on polylactic acid nanocomposites. Int J Biol Macromol 81:91–99PubMed
142.
Zurück zum Zitat Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8 Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2(1):1–8
143.
Zurück zum Zitat Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060PubMed Hu W, Chen S, Yang J, Li Z, Wang H (2014) Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym 101:1043–1060PubMed
144.
Zurück zum Zitat Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249 Zhijiang C, Guang Y, Kim J (2011) Biocompatible nanocomposites prepared by impregnating bacterial cellulose nanofibrils into poly(3-hydroxybutyrate). Curr Appl Phys 11:247–249
145.
Zurück zum Zitat Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082PubMed Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082PubMed
146.
Zurück zum Zitat Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209 Henrique MA, Silvério HA, Neto WPF, Pasquini D (2013) Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. J Environ Manag 121:202–209
147.
Zurück zum Zitat dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Indl Crops Prod 50:707–714 dos Santos RM, Neto WPF, Silvério HA, Martins DF, Dantas NO, Pasquini D (2013) Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste. Indl Crops Prod 50:707–714
148.
Zurück zum Zitat Nordli HR, Chinga-Carrasco G, Rokstad AM, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxity using human skin cells. Carbohydr Polym 150:65–76PubMed Nordli HR, Chinga-Carrasco G, Rokstad AM, Pukstad B (2016) Producing ultrapure wood cellulose nanofibrils and evaluating the cytotoxity using human skin cells. Carbohydr Polym 150:65–76PubMed
149.
Zurück zum Zitat Velasquez-Cock J, Ganan P, Posada P, Castro C, Serpa A, Gomez C, Putaux JL, Zuluaga JL (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: thermal and mechanical properties of resulting films. Ind Crops Prod 85:1–10 Velasquez-Cock J, Ganan P, Posada P, Castro C, Serpa A, Gomez C, Putaux JL, Zuluaga JL (2016) Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: thermal and mechanical properties of resulting films. Ind Crops Prod 85:1–10
150.
Zurück zum Zitat Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113PubMed Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113PubMed
151.
Zurück zum Zitat Pirani S, Hashaikeh R (2013) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93:357–363PubMed Pirani S, Hashaikeh R (2013) Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydr Polym 93:357–363PubMed
152.
Zurück zum Zitat Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61PubMed Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61PubMed
154.
Zurück zum Zitat Kalita E, Nath BK, Deb P, Agan F, Islam MdR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313PubMed Kalita E, Nath BK, Deb P, Agan F, Islam MdR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313PubMed
155.
Zurück zum Zitat Barana D, Salanti A, Orlandi M, Ali DS, Zoia L (2016) Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind Crops Prod 86:31–39 Barana D, Salanti A, Orlandi M, Ali DS, Zoia L (2016) Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Ind Crops Prod 86:31–39
156.
Zurück zum Zitat Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99 Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crops Prod 37:93–99
157.
Zurück zum Zitat Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuy F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549 Raquez JM, Murena Y, Goffin AL, Habibi Y, Ruelle B, DeBuy F, Dubois P (2012) Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: a sustainably-integrated approach. Compos Sci Technol 72:544–549
158.
Zurück zum Zitat Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 42:1189–1196 Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 42:1189–1196
159.
Zurück zum Zitat Purnama P, Kim SH (2014) Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers. Polym Degrad Stab 109:430–435 Purnama P, Kim SH (2014) Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers. Polym Degrad Stab 109:430–435
160.
Zurück zum Zitat Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717PubMed Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717PubMed
161.
Zurück zum Zitat Mukherjee T, Sani M, Kao N, Gupta R, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662 Mukherjee T, Sani M, Kao N, Gupta R, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng Sci 101:655–662
162.
Zurück zum Zitat Pracella M, Haque MdMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polym 55:3720–3728 Pracella M, Haque MdMU, Puglia D (2014) Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polym 55:3720–3728
163.
Zurück zum Zitat Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389 Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389
164.
Zurück zum Zitat Piekarska K, Sowinski P, Piorkowska E, Haque MdM, Pracella M (2016) Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos Part A Appl Sci Manuf 8:34–41 Piekarska K, Sowinski P, Piorkowska E, Haque MdM, Pracella M (2016) Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos Part A Appl Sci Manuf 8:34–41
165.
Zurück zum Zitat Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228 Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Polym J 74:218–228
166.
Zurück zum Zitat Yu HY, Yang XY, Lu FF, Chen GY, Yao JM (2016) Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid)nanocomposites with silver nanoparticles by spraying method. Carbohydr Polym 140:209–219PubMed Yu HY, Yang XY, Lu FF, Chen GY, Yao JM (2016) Fabrication of multifunctional cellulose nanocrystals/poly(lactic acid)nanocomposites with silver nanoparticles by spraying method. Carbohydr Polym 140:209–219PubMed
167.
Zurück zum Zitat Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384PubMed Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384PubMed
168.
Zurück zum Zitat Spiridon L, Darie RN, Kangas H (2016) Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos Part B Eng 92:19–27 Spiridon L, Darie RN, Kangas H (2016) Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Compos Part B Eng 92:19–27
169.
Zurück zum Zitat Kiziltas A, Nazari B, Kiziltas EE, Gardner DJ, Han Y, Rushing TS (2016) Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydr Polym 140:393–399PubMed Kiziltas A, Nazari B, Kiziltas EE, Gardner DJ, Han Y, Rushing TS (2016) Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydr Polym 140:393–399PubMed
170.
Zurück zum Zitat Tanase EE, Popa ME, Râpa M, Popa O (2015) PHB/Cellulose fibers based materials: physical, mechanical and barrier properties. Agric Agric Sci Proc 6:608–615 Tanase EE, Popa ME, Râpa M, Popa O (2015) PHB/Cellulose fibers based materials: physical, mechanical and barrier properties. Agric Agric Sci Proc 6:608–615
171.
Zurück zum Zitat Cyras VP, Soledad CM, Analía V (2009) Biocomposites based on renewable resource: acetylated and non-acetylated cellulose cardboard coated with polyhydroxybutyrate. Polym 50:6274–6280 Cyras VP, Soledad CM, Analía V (2009) Biocomposites based on renewable resource: acetylated and non-acetylated cellulose cardboard coated with polyhydroxybutyrate. Polym 50:6274–6280
172.
Zurück zum Zitat Seoane IT, Manfredi LB, Cyras VP (2015) Properties and processing relationship of polyhydroxybutryate and cellulose biocomposites. Proc Mater Sci 8:807–813 Seoane IT, Manfredi LB, Cyras VP (2015) Properties and processing relationship of polyhydroxybutryate and cellulose biocomposites. Proc Mater Sci 8:807–813
173.
Zurück zum Zitat Figueiredo ARP, Silvestre AJD, Neto CP, Freire CSR (2015) In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposites films production. Carbohydr Polym 132:400–408PubMed Figueiredo ARP, Silvestre AJD, Neto CP, Freire CSR (2015) In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposites films production. Carbohydr Polym 132:400–408PubMed
174.
Zurück zum Zitat Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244 Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydr Polym 71:235–244
175.
Zurück zum Zitat Lee SH, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposites. Compos Part A Appl Sci Manuf 42:151–156 Lee SH, Teramoto Y, Endo T (2011) Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposites. Compos Part A Appl Sci Manuf 42:151–156
176.
Zurück zum Zitat Cocca M, Avolio R, Gentile G, Di Pace E, Errico ME, Avella M (2015) Amorphized cellulose as filler in biocomposites based on poly(ε-caprolactone). Carbohydr Polym 118:170–182PubMed Cocca M, Avolio R, Gentile G, Di Pace E, Errico ME, Avella M (2015) Amorphized cellulose as filler in biocomposites based on poly(ε-caprolactone). Carbohydr Polym 118:170–182PubMed
Metadaten
Titel
Critical review on agrowaste cellulose applications for biopolymers
verfasst von
Tshwafo Elias Motaung
Linda Zikhona Linganiso
Publikationsdatum
14.11.2018
Verlag
Springer India
Erschienen in
International Journal of Plastics Technology / Ausgabe 2/2018
Print ISSN: 0972-656X
Elektronische ISSN: 0975-072X
DOI
https://doi.org/10.1007/s12588-018-9219-6

Weitere Artikel der Ausgabe 2/2018

International Journal of Plastics Technology 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.