Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.08.2020 | Original Article | Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021

Cross-domain sentiment aware word embeddings for review sentiment analysis

Zeitschrift:
International Journal of Machine Learning and Cybernetics > Ausgabe 2/2021
Autoren:
Jun Liu, Shuang Zheng, Guangxia Xu, Mingwei Lin
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Learning low-dimensional vector representations of words from a large corpus is one of the basic tasks in natural language processing (NLP). The existing universal word embedding model learns word vectors mainly through grammar and semantic information from the context, while ignoring the sentiment information contained in the words. Some approaches, although they model sentiment information in the reviews, do not consider certain words in different domains. In a case where the emotion changes, if the general word vector is directly applied to the review sentiment analysis task, then this will inevitably affect the performance of the sentiment classification. To solve this problem, this paper extends the CBoW (continuous bag-of-words) word vector model and proposes a cross-domain sentiment aware word embedding learning model, which can capture the sentiment information and domain relevance of a word at the same time. This paper conducts several experiments on Amazon user review data in different domains to evaluate the performance of the model. The experimental results show that the proposed model can obtain a nearly 2% accuracy improvement compared with the general word vector when modeling only the sentiment information of the context. At the same time, when the domain information and the sentiment information are both included, the accuracy and Macro-F1 value of the sentiment classification tasks are significantly improved compared with existing sentiment word embeddings.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

International Journal of Machine Learning and Cybernetics 2/2021 Zur Ausgabe