Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.02.2020 | Original Paper | Ausgabe 1-2/2020

Machine Vision and Applications 1-2/2020

Cross-spectral registration of natural images with SIPCFE

Zeitschrift:
Machine Vision and Applications > Ausgabe 1-2/2020
Autoren:
Amir Hossein Farzaneh, Xiaojun Qi
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Image registration is a viable task in the field of computer vision with many applications. When images are captured under different spectrum conditions, a challenge is imposed on the task of registration. Researchers carefully handcraft a local module insensitive to illumination changes across cross-spectral image pairs to tackle this challenge. We, in this paper, develop an optimized feature-based approach Single Instance Phase Congruency Feature Extractor (SIPCFE) to tackle the problem of natural cross-spectral image registration. SIPCFE uses the phase information of an image pair to quickly identify and describe reliable keypoints that are insensitive to illumination. It then employs a sequence of outlier removal processes to find the matching feature points accurately and the Direct Linear Transformation to estimate the geometric transformation to align the image pair. We extensively study the proposed approach for every module in the system to give more insights into the challenges. We benchmark our proposed method and other state-of-the-art feature-based methods developed for cross-spectral imagery on three datasets with various settings and image contents. The comprehensive analysis of cross-spectral registration results of natural images demonstrates that SIPCFE achieves up to 47.24%, 14.29%, and 12.45% accuracy improvement on the first, second, and third dataset, respectively, over the second best registration method in the benchmark.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1-2/2020

Machine Vision and Applications 1-2/2020 Zur Ausgabe

Premium Partner

    Bildnachweise