Skip to main content
Erschienen in: Journal of Electronic Materials 8/2021

11.05.2021 | Original Research Article

Crystal Growth, Optical, Thermal, Mechanical and Laser Damage Threshold Properties of Nonlinear Optical l-Methionine Inserted Potassium Pentaborate (LMKB5) Single Crystal for Optoelectronic Applications

verfasst von: M. Prabhaharan, C. Karnan, S. Manivannan, S. Azhagiri

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

l-methionine, boric acid and potassium carbonate were used to prepare l-methionine inserted potassium pentaborate (LMKB5) solution using deionized water as a solvent. A semi-organic crystal was grown by solvent vaporization at lab temperature. Structural analysis was performed on the LMKB5 crystal to affirm cell dimensions. Morphology of the grown crystal was confirmed by scanning electron microscopy (SEM). Energy dispersive x-ray (EDAX) study was used to obtain the elemental composition. The vibrational analysis was performed on the as-grown crystal, which confirms the presence of LMKB5. The optical analysis was performed using a UV–VIS–NIR spectrophotometer to calculate the energy gap of the title material. Thermogravimetry (TG) and differential scanning calorimetry (DSC) analysis are performed on a grown crystal to evaluate the thermal stability of LMKB5 crystal. Differential thermal analysis (DTA) curve affirms that the title material has crystalline nature due to a sharp endothermic peak at 193.49°C. Mechanical strength of the material was estimated using Vicker's microhardness. Laser damage threshold (LDT) studies were carried out to analyze surface damage tolerance stability in crystal. Grown material is essential for a second harmonic generation (SHG).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat S. Kandhan, P. Krishnan, R. Jagan, S. Aravindhan, S. Srinivasan, and S. Gunasekaran, Opt. Mater. (Amst). 84, 556 (2018).CrossRef S. Kandhan, P. Krishnan, R. Jagan, S. Aravindhan, S. Srinivasan, and S. Gunasekaran, Opt. Mater. (Amst). 84, 556 (2018).CrossRef
3.
Zurück zum Zitat R. Arivuselvi, and P.R. Babu, Phys. B Phys. Condens. Matter 533, 17 (2018).CrossRef R. Arivuselvi, and P.R. Babu, Phys. B Phys. Condens. Matter 533, 17 (2018).CrossRef
4.
Zurück zum Zitat S.A. Rajasekar, K. Thamizharasan, J.G.M. Jesudurai, D. Prem Anand, and P. Sagayaraj, Mater. Chem. Phys. 84, 157 (2004).CrossRef S.A. Rajasekar, K. Thamizharasan, J.G.M. Jesudurai, D. Prem Anand, and P. Sagayaraj, Mater. Chem. Phys. 84, 157 (2004).CrossRef
5.
Zurück zum Zitat C.F. Dewey, W.R. Cook, R.T. Hodgson, and J.J. Wynne, Appl. Phys. Lett. 26, 714 (1975).CrossRef C.F. Dewey, W.R. Cook, R.T. Hodgson, and J.J. Wynne, Appl. Phys. Lett. 26, 714 (1975).CrossRef
6.
Zurück zum Zitat C.R. Raja, R. Gobinathan, and F.D. Gnanam, Cryst. Res. Technol. 28, 453 (1993).CrossRef C.R. Raja, R. Gobinathan, and F.D. Gnanam, Cryst. Res. Technol. 28, 453 (1993).CrossRef
7.
8.
Zurück zum Zitat P. Sangeetha, P. Jayaprakash, M. Nageshwari, C. Rathika Thaya Kumari, S. Sudha, M. Prakash, G. Vinitha, and M. Lydia Caroline, Phys. B Condens. Matter 525, 164 (2017).CrossRef P. Sangeetha, P. Jayaprakash, M. Nageshwari, C. Rathika Thaya Kumari, S. Sudha, M. Prakash, G. Vinitha, and M. Lydia Caroline, Phys. B Condens. Matter 525, 164 (2017).CrossRef
9.
Zurück zum Zitat M. Fleck, and A.M. Petrosyan, Salts of Amino Acids: Crystallization,Structure and Properties (Cham: Springer, 2014).CrossRef M. Fleck, and A.M. Petrosyan, Salts of Amino Acids: Crystallization,Structure and Properties (Cham: Springer, 2014).CrossRef
10.
Zurück zum Zitat S. Natarajan, N.R. Devi, S.D.M.B. Dhas, and S. Athimoolam, Sci. Technol. Adv. Mater. 9, 025012 (2008).CrossRef S. Natarajan, N.R. Devi, S.D.M.B. Dhas, and S. Athimoolam, Sci. Technol. Adv. Mater. 9, 025012 (2008).CrossRef
11.
Zurück zum Zitat V.C. Vincent, G. Bakiyaraj, K. Kirubavathi, and K. Selvaraju, Chem. Data Collect. 22, 100247 (2019).CrossRef V.C. Vincent, G. Bakiyaraj, K. Kirubavathi, and K. Selvaraju, Chem. Data Collect. 22, 100247 (2019).CrossRef
12.
Zurück zum Zitat P. Vasudevan, S. Sankar, and S. Gokulraj, AIP Conf. Proc. 1512, 866 (2013).CrossRef P. Vasudevan, S. Sankar, and S. Gokulraj, AIP Conf. Proc. 1512, 866 (2013).CrossRef
13.
Zurück zum Zitat W.H. Zachariasen, and H.A. Plettinger, Acta Crystallogr. 16, 376 (1963).CrossRef W.H. Zachariasen, and H.A. Plettinger, Acta Crystallogr. 16, 376 (1963).CrossRef
14.
Zurück zum Zitat K. Juliet sheela, and P. Subramanian, Phys. B Condens. Matter 534, 156 (2018).CrossRef K. Juliet sheela, and P. Subramanian, Phys. B Condens. Matter 534, 156 (2018).CrossRef
15.
Zurück zum Zitat S.B.J. Silviya, C.K. Mahadevan, T. Balu, A.M.E. Raj, S. Balakumar, and S.G.J. Andrews, Surf. Interfaces 11, 14 (2018).CrossRef S.B.J. Silviya, C.K. Mahadevan, T. Balu, A.M.E. Raj, S. Balakumar, and S.G.J. Andrews, Surf. Interfaces 11, 14 (2018).CrossRef
16.
Zurück zum Zitat H.X. Liu, Y.X. Liang, and X. Jiang, J. Solid State Chem. 181, 3243 (2008).CrossRef H.X. Liu, Y.X. Liang, and X. Jiang, J. Solid State Chem. 181, 3243 (2008).CrossRef
17.
Zurück zum Zitat G. Socrates, Infrared and Raman Characteristic Group Frequencies. Tables and Charts (2001). G. Socrates, Infrared and Raman Characteristic Group Frequencies. Tables and Charts (2001).
18.
Zurück zum Zitat R.M. Silverstein, F.X. Webster, D.J. Kiemle, and D.L. Bryce, Spectrometric Identification of Organic Compounds (n.d.). R.M. Silverstein, F.X. Webster, D.J. Kiemle, and D.L. Bryce, Spectrometric Identification of Organic Compounds (n.d.).
19.
Zurück zum Zitat R.L. Shriner, C.K.F. Hermann, T.C. Morrill, D.Y. Curtin, and R.C. Fuson, The Systematic Identification of Organic Compounds (2004). R.L. Shriner, C.K.F. Hermann, T.C. Morrill, D.Y. Curtin, and R.C. Fuson, The Systematic Identification of Organic Compounds (2004).
20.
Zurück zum Zitat T. Balakrishnan, G. Bhagavannarayana, and K. Ramamurthi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 578 (2008).CrossRef T. Balakrishnan, G. Bhagavannarayana, and K. Ramamurthi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 578 (2008).CrossRef
21.
Zurück zum Zitat P. Karuppasamy, V. Sivasubramani, M.S. Pandian, and P. Ramasamy, RSC Adv. 6, 109105 (2016).CrossRef P. Karuppasamy, V. Sivasubramani, M.S. Pandian, and P. Ramasamy, RSC Adv. 6, 109105 (2016).CrossRef
22.
Zurück zum Zitat S. Chidambaram, A.D.K. Raj, and R. Manimekalai, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).CrossRef S. Chidambaram, A.D.K. Raj, and R. Manimekalai, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020).CrossRef
23.
Zurück zum Zitat B. Jalel, N. Ennaceur, S. Hawech, and R. Henchiri, J. Phys. Chem. Solids 133, 35 (2019).CrossRef B. Jalel, N. Ennaceur, S. Hawech, and R. Henchiri, J. Phys. Chem. Solids 133, 35 (2019).CrossRef
24.
Zurück zum Zitat B.W. Mott, Microindentation Hardness Testing (London: Butterworths, 1956). B.W. Mott, Microindentation Hardness Testing (London: Butterworths, 1956).
25.
Zurück zum Zitat P. Rajasekar, and K. Thamizharasan, J. Mater. Sci. Mater. Electron. 29, 1777 (2017).CrossRef P. Rajasekar, and K. Thamizharasan, J. Mater. Sci. Mater. Electron. 29, 1777 (2017).CrossRef
26.
Zurück zum Zitat R.P. Mathangi, A.R. Prabhakaran, S.N. Jayanthi, and K. Thamizharasan, Mater. Today Proc. 5, 17730 (2018).CrossRef R.P. Mathangi, A.R. Prabhakaran, S.N. Jayanthi, and K. Thamizharasan, Mater. Today Proc. 5, 17730 (2018).CrossRef
27.
Zurück zum Zitat R.E. Smallman, and A.H.W. Ngan, Mod Phys. Metall (Elsevier, 2014), pp. 159–250.CrossRef R.E. Smallman, and A.H.W. Ngan, Mod Phys. Metall (Elsevier, 2014), pp. 159–250.CrossRef
29.
Zurück zum Zitat S. Suresh, M. Asath Bahadur, and S. Athimoolam, J. Mater. Sci. Mater. Electron. 27, 4578 (2016).CrossRef S. Suresh, M. Asath Bahadur, and S. Athimoolam, J. Mater. Sci. Mater. Electron. 27, 4578 (2016).CrossRef
30.
Zurück zum Zitat B. Vengatesan, N. Kanniah, P. Ramasamy, and C.G. Centre, Mater. Sci. Eng. 104, 245 (1988).CrossRef B. Vengatesan, N. Kanniah, P. Ramasamy, and C.G. Centre, Mater. Sci. Eng. 104, 245 (1988).CrossRef
32.
Zurück zum Zitat B. Lal, K.K. Bamzai, P.N. Kotru, and B.M. Wanklyn, Mater. Chem. Phys. 85, 353 (2004).CrossRef B. Lal, K.K. Bamzai, P.N. Kotru, and B.M. Wanklyn, Mater. Chem. Phys. 85, 353 (2004).CrossRef
33.
Zurück zum Zitat M. Lakshmipriya, D.R. Babu, and R.E. Vizhi, IOP Conf. Ser. Mater. Sci. Eng. 73, 12091 (2015).CrossRef M. Lakshmipriya, D.R. Babu, and R.E. Vizhi, IOP Conf. Ser. Mater. Sci. Eng. 73, 12091 (2015).CrossRef
34.
35.
Zurück zum Zitat V. Singh, S. Suri, and K.K. Bamzai, J. Ceram. 2013, 280605 (2013). V. Singh, S. Suri, and K.K. Bamzai, J. Ceram. 2013, 280605 (2013).
36.
Zurück zum Zitat K. Niihara, R. Morena, and D.P.H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).CrossRef K. Niihara, R. Morena, and D.P.H. Hasselman, J. Mater. Sci. Lett. 1, 13 (1982).CrossRef
37.
38.
Zurück zum Zitat R. Arivuselvi, and P.R. Babu, Phys. B Condens. Matter 533, 17 (2018).CrossRef R. Arivuselvi, and P.R. Babu, Phys. B Condens. Matter 533, 17 (2018).CrossRef
39.
Zurück zum Zitat P. Karuppasamy, T. Kamalesh, V. Mohankumar, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Verma, and S. Venugopal Rao, J. Mol. Struct. 1176, 254 (2019).CrossRef P. Karuppasamy, T. Kamalesh, V. Mohankumar, S. Abdul Kalam, M. Senthil Pandian, P. Ramasamy, S. Verma, and S. Venugopal Rao, J. Mol. Struct. 1176, 254 (2019).CrossRef
40.
Zurück zum Zitat C. Karnan, A.R. Prabakaran, M. Prabhaharan, and G. Vinitha, J. Electron. Mater. 48, 7915 (2019).CrossRef C. Karnan, A.R. Prabakaran, M. Prabhaharan, and G. Vinitha, J. Electron. Mater. 48, 7915 (2019).CrossRef
41.
Zurück zum Zitat A.N. Vigneshwaran, S. Kalainathan, and C.R. Raja, Opt. Laser Technol. 100, 153 (2018).CrossRef A.N. Vigneshwaran, S. Kalainathan, and C.R. Raja, Opt. Laser Technol. 100, 153 (2018).CrossRef
Metadaten
Titel
Crystal Growth, Optical, Thermal, Mechanical and Laser Damage Threshold Properties of Nonlinear Optical l-Methionine Inserted Potassium Pentaborate (LMKB5) Single Crystal for Optoelectronic Applications
verfasst von
M. Prabhaharan
C. Karnan
S. Manivannan
S. Azhagiri
Publikationsdatum
11.05.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08972-y

Weitere Artikel der Ausgabe 8/2021

Journal of Electronic Materials 8/2021 Zur Ausgabe

Neuer Inhalt