Skip to main content
Erschienen in: Journal of Materials Science 17/2017

09.05.2017 | Polymers

Crystallization behavior and enhanced toughness of poly(ethylene terephthalate) composite with noncovalent modified graphene functionalized by pyrene-terminated molecules: a comparative study

verfasst von: Zaizai Tong, Wangqian Zhuo, Jie Zhou, Runsheng Huang, Guohua Jiang

Erschienen in: Journal of Materials Science | Ausgabe 17/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Noncovalent functionalization was used to modify the graphene nanosheets via ππ stacking of pyrene-terminated molecule (Py-LC), resulting in an intercalated layer structure incorporated with about 45 wt% of Py-LC. The organically modified graphene (Py-LC-rGO) has a better dispersion in the PET matrix compared with that without modification. Consequently, it remarkably accelerates the crystallization of PET. Moreover, the nucleation ability of Py-LC-rGO is even stronger than that of commercial nucleation agent, sodium benzoate, leading to a thicker lamellar crystals and denser stacking of lamellae. Accordingly, the impact toughness of such a composite is improved to be nine times as that of neat PET, which can be a promising candidate as nanofiller for PET.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lu XF, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42:9423–9431CrossRef Lu XF, Hay JN (2001) Isothermal crystallization kinetics and melting behaviour of poly(ethylene terephthalate). Polymer 42:9423–9431CrossRef
2.
Zurück zum Zitat Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47:1383–1391CrossRef Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47:1383–1391CrossRef
3.
Zurück zum Zitat Averett RD, Realff ML, Jacob KI (2009) The effects of fatigue and residual strain on the mechanical behavior of poly(ethylene terephthalate) unreinforced and nanocomposite fibers. Compos A Appl Sci Manuf 40:709–723CrossRef Averett RD, Realff ML, Jacob KI (2009) The effects of fatigue and residual strain on the mechanical behavior of poly(ethylene terephthalate) unreinforced and nanocomposite fibers. Compos A Appl Sci Manuf 40:709–723CrossRef
4.
Zurück zum Zitat Averett RD, Realff ML, Jacob KI (2010) Comparative post fatigue residual property predictions of reinforced and unreinforced poly(ethylene terephthalate) fibers using artificial neural networks. Compos A Appl Sci Manuf 41:331–344CrossRef Averett RD, Realff ML, Jacob KI (2010) Comparative post fatigue residual property predictions of reinforced and unreinforced poly(ethylene terephthalate) fibers using artificial neural networks. Compos A Appl Sci Manuf 41:331–344CrossRef
5.
Zurück zum Zitat Zhang J, Wu L, Zhao M, Li J, Wang C (2005) Effects of nucleating agents on physical properties of poly(trimethylene terephthalate)/glass-fiber composites. J Appl Polym Sci 96:883–893CrossRef Zhang J, Wu L, Zhao M, Li J, Wang C (2005) Effects of nucleating agents on physical properties of poly(trimethylene terephthalate)/glass-fiber composites. J Appl Polym Sci 96:883–893CrossRef
6.
Zurück zum Zitat Su JJ, Peng F, Gao X, Yang GH, Fu Q, Wang K (2014) Superior toughness obtained via tuning the compatibility of poly(ethylene terephthalate)/poly(ethylene-octene) blends. Mater Des 53:673–680CrossRef Su JJ, Peng F, Gao X, Yang GH, Fu Q, Wang K (2014) Superior toughness obtained via tuning the compatibility of poly(ethylene terephthalate)/poly(ethylene-octene) blends. Mater Des 53:673–680CrossRef
7.
Zurück zum Zitat Xie L, Xie Y, Wu Q, Wang M, Wu Q, Zhou X, Ge X (2015) Effect of poly(acrylic acid)-modified poly(ethylene terephthalate) on improving the integrated mechanical properties of poly(ethylene terephthalate)/elastomer blend. Ind Eng Chem Res 54:4748–4755CrossRef Xie L, Xie Y, Wu Q, Wang M, Wu Q, Zhou X, Ge X (2015) Effect of poly(acrylic acid)-modified poly(ethylene terephthalate) on improving the integrated mechanical properties of poly(ethylene terephthalate)/elastomer blend. Ind Eng Chem Res 54:4748–4755CrossRef
8.
Zurück zum Zitat Jiang Z, Jin J, Xiao C, Li X (2011) Effect of high content of carbon black on non-isothermal crystallization behavior of poly(ethylene terephthalate). Polym Bull 67:1633–1648CrossRef Jiang Z, Jin J, Xiao C, Li X (2011) Effect of high content of carbon black on non-isothermal crystallization behavior of poly(ethylene terephthalate). Polym Bull 67:1633–1648CrossRef
9.
Zurück zum Zitat Xia T, Xi Z, Yi X, Liu T, Zhao L (2015) Melt foamability of poly(ethylene terephthalate)/clay nanocomposites prepared by extrusion blending in the presence of pyromellitic dianhydride. Ind Eng Chem Res 54:6922–6931CrossRef Xia T, Xi Z, Yi X, Liu T, Zhao L (2015) Melt foamability of poly(ethylene terephthalate)/clay nanocomposites prepared by extrusion blending in the presence of pyromellitic dianhydride. Ind Eng Chem Res 54:6922–6931CrossRef
10.
Zurück zum Zitat Shen Z, Luo F, Xing Q, Si P, Lei X, Ji L, Ding S, Wang K (2016) Effect of an aryl amide derivative on the crystallization behaviour and impact toughness of poly(ethylene terephthalate). CrystEngComm 18:2135–2143CrossRef Shen Z, Luo F, Xing Q, Si P, Lei X, Ji L, Ding S, Wang K (2016) Effect of an aryl amide derivative on the crystallization behaviour and impact toughness of poly(ethylene terephthalate). CrystEngComm 18:2135–2143CrossRef
11.
Zurück zum Zitat Xanthos M, Baltzis BC, Hsu PP (1997) Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate). J Appl Polym Sci 64:1423–1435CrossRef Xanthos M, Baltzis BC, Hsu PP (1997) Effects of carbonate salts on crystallization kinetics and properties of recycled poly(ethylene terephthalate). J Appl Polym Sci 64:1423–1435CrossRef
12.
Zurück zum Zitat Todorov LV, Martins CI, Viana JC (2014) In situ waxs/saxs structural evolution study during uniaxial stretching of poly(ethylene terephthalate) nanocomposites in the solid state: Poly(ethylene terephthalate)/titanium dioxide and poly(ethylene terephthalate)/silica nanocomposites. J Appl Polym Sci 131:39752CrossRef Todorov LV, Martins CI, Viana JC (2014) In situ waxs/saxs structural evolution study during uniaxial stretching of poly(ethylene terephthalate) nanocomposites in the solid state: Poly(ethylene terephthalate)/titanium dioxide and poly(ethylene terephthalate)/silica nanocomposites. J Appl Polym Sci 131:39752CrossRef
13.
Zurück zum Zitat Xu Y, Song Y, Zheng Q (2015) Effects of nanosilica on crystallization and thermal ageing behaviors of polyethylene terephthalate. Chin J Polym Sci 33:697–708CrossRef Xu Y, Song Y, Zheng Q (2015) Effects of nanosilica on crystallization and thermal ageing behaviors of polyethylene terephthalate. Chin J Polym Sci 33:697–708CrossRef
14.
Zurück zum Zitat Wang Y, Wang W, Zhang Z, Xu L, Li P (2016) Study of the glass transition temperature and the mechanical properties of pet/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J 75:36–45CrossRef Wang Y, Wang W, Zhang Z, Xu L, Li P (2016) Study of the glass transition temperature and the mechanical properties of pet/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J 75:36–45CrossRef
15.
Zurück zum Zitat Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. doi:10.1007/s10853-016-9874-y CrossRef Yin B, Wang J, Jia H, He J, Zhang X, Xu Z (2016) Enhanced mechanical properties and thermal conductivity of styrene-butadiene rubber reinforced with polyvinylpyrrolidone-modified graphene oxide. J Mater Sci 51:5724–5737. doi:10.​1007/​s10853-016-9874-y CrossRef
16.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
17.
18.
Zurück zum Zitat Wang B, Li Y, Weng G, Jiang Z, Chen P, Wang Z, Gu Q (2014) Reduced graphene oxide enhances the crystallization and orientation of poly(ε-caprolactone). Compos Sci Technol 96:63–70CrossRef Wang B, Li Y, Weng G, Jiang Z, Chen P, Wang Z, Gu Q (2014) Reduced graphene oxide enhances the crystallization and orientation of poly(ε-caprolactone). Compos Sci Technol 96:63–70CrossRef
19.
Zurück zum Zitat Aoyama S, Park YT, Ougizawa T, Macosko CW (2014) Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 55:2077–2085CrossRef Aoyama S, Park YT, Ougizawa T, Macosko CW (2014) Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 55:2077–2085CrossRef
20.
Zurück zum Zitat Xu JZ, Zhang ZJ, Xu H, Chen JB, Ran R, Li ZM (2015) Highly enhanced crystallization kinetics of poly(l-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 48:4891–4900CrossRef Xu JZ, Zhang ZJ, Xu H, Chen JB, Ran R, Li ZM (2015) Highly enhanced crystallization kinetics of poly(l-lactic acid) by poly(ethylene glycol) grafted graphene oxide simultaneously as heterogeneous nucleation agent and chain mobility promoter. Macromolecules 48:4891–4900CrossRef
21.
Zurück zum Zitat Mondal T, Ashkar R, Butler P, Bhowmick AK, Krishnamoorti R (2016) Graphene nanocomposites with high molecular weight poly(epsilon-caprolactone) grafts: controlled synthesis and accelerated crystallization. ACS Macro Lett 5:278–282CrossRef Mondal T, Ashkar R, Butler P, Bhowmick AK, Krishnamoorti R (2016) Graphene nanocomposites with high molecular weight poly(epsilon-caprolactone) grafts: controlled synthesis and accelerated crystallization. ACS Macro Lett 5:278–282CrossRef
22.
Zurück zum Zitat Seyyed Monfared Zanjani J, Saner Okan B, Menceloglu Y (2016) Manufacturing of multilayer graphene oxide/poly(ethylene terephthalate) nanocomposites with tunable crystallinity, chain orientations and thermal transitions. Mater Chem Phys 176:58–67CrossRef Seyyed Monfared Zanjani J, Saner Okan B, Menceloglu Y (2016) Manufacturing of multilayer graphene oxide/poly(ethylene terephthalate) nanocomposites with tunable crystallinity, chain orientations and thermal transitions. Mater Chem Phys 176:58–67CrossRef
23.
24.
Zurück zum Zitat Criado A, Melchionna M, Marchesan S, Prato M (2015) The covalent functionalization of graphene on substrates. Angew Chem Int Ed 54:10734–10750CrossRef Criado A, Melchionna M, Marchesan S, Prato M (2015) The covalent functionalization of graphene on substrates. Angew Chem Int Ed 54:10734–10750CrossRef
25.
Zurück zum Zitat Sheng X, Xie D, Cai W, Zhang X, Zhong L, Zhang H (2015) In situ thermal reduction of graphene nanosheets based poly(methyl methacrylate) nanocomposites with effective reinforcements. Ind Eng Chem Res 54:649–658CrossRef Sheng X, Xie D, Cai W, Zhang X, Zhong L, Zhang H (2015) In situ thermal reduction of graphene nanosheets based poly(methyl methacrylate) nanocomposites with effective reinforcements. Ind Eng Chem Res 54:649–658CrossRef
26.
Zurück zum Zitat Wan YJ, Yang WH, Yu SH, Sun R, Wong CP, Liao WH (2016) Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos Sci Technol 122:27–35CrossRef Wan YJ, Yang WH, Yu SH, Sun R, Wong CP, Liao WH (2016) Covalent polymer functionalization of graphene for improved dielectric properties and thermal stability of epoxy composites. Compos Sci Technol 122:27–35CrossRef
27.
Zurück zum Zitat Santos RM, Vilaverde C, Cunha E, Paiva MC, Covas JA (2016) Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter 12:77–86CrossRef Santos RM, Vilaverde C, Cunha E, Paiva MC, Covas JA (2016) Probing dispersion and re-agglomeration phenomena upon melt-mixing of polymer-functionalized graphite nanoplates. Soft Matter 12:77–86CrossRef
28.
Zurück zum Zitat Kim MJ, Kim DW, Yun JS, Lee DH, Oh YJ, Nam JA, Kim SR, Lee JH, Park SY, Min BG, In I (2013) Preparation of stable dispersions of chemically reduced graphene oxide through noncovalent interactions with poly(n-isopropyl acrylamide)-grafted pluronic copolymer. J Mater Sci 48:3357–3362. doi:10.1007/s10853-012-7113-8 CrossRef Kim MJ, Kim DW, Yun JS, Lee DH, Oh YJ, Nam JA, Kim SR, Lee JH, Park SY, Min BG, In I (2013) Preparation of stable dispersions of chemically reduced graphene oxide through noncovalent interactions with poly(n-isopropyl acrylamide)-grafted pluronic copolymer. J Mater Sci 48:3357–3362. doi:10.​1007/​s10853-012-7113-8 CrossRef
29.
Zurück zum Zitat Ma WS, Wu L, Yang F, Wang SF (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49:562–571. doi:10.1007/s10853-013-7736-4 CrossRef Ma WS, Wu L, Yang F, Wang SF (2014) Non-covalently modified reduced graphene oxide/polyurethane nanocomposites with good mechanical and thermal properties. J Mater Sci 49:562–571. doi:10.​1007/​s10853-013-7736-4 CrossRef
30.
Zurück zum Zitat Ji L, Wu Y, Ma L, Yang X (2015) Noncovalent functionalization of graphene with pyrene-terminated liquid crystalline polymer. Compos A Appl Sci Manuf 72:32–39CrossRef Ji L, Wu Y, Ma L, Yang X (2015) Noncovalent functionalization of graphene with pyrene-terminated liquid crystalline polymer. Compos A Appl Sci Manuf 72:32–39CrossRef
31.
Zurück zum Zitat Rohini R, Katti P, Bose S (2015) Tailoring the interface in graphene/thermoset polymer composites: a critical review. Polymer 70:A17–A34CrossRef Rohini R, Katti P, Bose S (2015) Tailoring the interface in graphene/thermoset polymer composites: a critical review. Polymer 70:A17–A34CrossRef
32.
Zurück zum Zitat Wang Y, Yang C, Mai YW, Zhang Y (2016) Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites. Carbon 102:311–318CrossRef Wang Y, Yang C, Mai YW, Zhang Y (2016) Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites. Carbon 102:311–318CrossRef
33.
Zurück zum Zitat Vasileiou AA, Kontopoulou M, Docoslis A (2014) A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites. ACS Appl Mater Interfaces 6:1916–1925CrossRef Vasileiou AA, Kontopoulou M, Docoslis A (2014) A noncovalent compatibilization approach to improve the filler dispersion and properties of polyethylene/graphene composites. ACS Appl Mater Interfaces 6:1916–1925CrossRef
34.
Zurück zum Zitat Wan S, Li H, Li D, Xu T, Zhang S, Dou X, Wu L (2015) Noncovalent functionalization of graphene nanosheets with cluster-cored star polymers and their reinforced polymer coating. ACS Macro Lett 4:974–978CrossRef Wan S, Li H, Li D, Xu T, Zhang S, Dou X, Wu L (2015) Noncovalent functionalization of graphene nanosheets with cluster-cored star polymers and their reinforced polymer coating. ACS Macro Lett 4:974–978CrossRef
35.
Zurück zum Zitat Georgakilas V, Tiwari JN, Kemp KC, Perrnan JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRef Georgakilas V, Tiwari JN, Kemp KC, Perrnan JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRef
36.
Zurück zum Zitat Yu G, Ye Y, Tong Z, Yang J, Li Z, Hua B, Shao L, Li S (2016) A porphyrin-based discrete tetragonal prismatic cage: host-guest complexation and its application in tuning liquid-crystalline behaviour. Macromol Rapid Commun 37:1540–1547CrossRef Yu G, Ye Y, Tong Z, Yang J, Li Z, Hua B, Shao L, Li S (2016) A porphyrin-based discrete tetragonal prismatic cage: host-guest complexation and its application in tuning liquid-crystalline behaviour. Macromol Rapid Commun 37:1540–1547CrossRef
37.
Zurück zum Zitat Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561CrossRef Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 20:3557–3561CrossRef
38.
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
39.
Zurück zum Zitat Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578CrossRef
40.
Zurück zum Zitat Hontorialucas C, Lopezpeinado AJ, Lopezgonzalez JDD, Rojascervantes ML, Martinaranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592CrossRef Hontorialucas C, Lopezpeinado AJ, Lopezgonzalez JDD, Rojascervantes ML, Martinaranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592CrossRef
41.
Zurück zum Zitat Tong ZZ, Zhou B, Huang J, Xu JT, Fan ZQ (2013) Olefinic blocky copolymer/montmorillonite nanocomposites with collapsed clay layers. Compos Sci Technol 85:111–117CrossRef Tong ZZ, Zhou B, Huang J, Xu JT, Fan ZQ (2013) Olefinic blocky copolymer/montmorillonite nanocomposites with collapsed clay layers. Compos Sci Technol 85:111–117CrossRef
42.
Zurück zum Zitat Tong ZZ, Zhou B, Huang J, Xu JT, Fan ZQ (2014) Hierarchical structures of olefinic blocky copolymer/montmorillonite nanocomposites with collapsed and intercalated clay layers. RSC Adv 4:15678–15688CrossRef Tong ZZ, Zhou B, Huang J, Xu JT, Fan ZQ (2014) Hierarchical structures of olefinic blocky copolymer/montmorillonite nanocomposites with collapsed and intercalated clay layers. RSC Adv 4:15678–15688CrossRef
43.
Zurück zum Zitat Tong ZZ, Huang J, Zhou B, Xu JT, Fan ZQ (2015) Self-nucleation behaviors of olefinic blocky copolymer/montmorillonite nanocomposites with collapsed and intercalated clay layers. J Appl Polym Sci 132:41771 Tong ZZ, Huang J, Zhou B, Xu JT, Fan ZQ (2015) Self-nucleation behaviors of olefinic blocky copolymer/montmorillonite nanocomposites with collapsed and intercalated clay layers. J Appl Polym Sci 132:41771
44.
Zurück zum Zitat Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Expr Polym Lett 1:245–251CrossRef Jiang XL, Luo SJ, Sun K, Chen XD (2007) Effect of nucleating agents on crystallization kinetics of PET. Expr Polym Lett 1:245–251CrossRef
45.
Zurück zum Zitat Avrami M (1939) Kinetics of phase change I: general theory. J Chem Phys 7:1103–1112CrossRef Avrami M (1939) Kinetics of phase change I: general theory. J Chem Phys 7:1103–1112CrossRef
46.
Zurück zum Zitat Huang HD, Xu JZ, Fan Y, Xu L, Li ZM (2013) Poly(L-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J Phys Chem B 117:10641–10651CrossRef Huang HD, Xu JZ, Fan Y, Xu L, Li ZM (2013) Poly(L-lactic acid) crystallization in a confined space containing graphene oxide nanosheets. J Phys Chem B 117:10641–10651CrossRef
47.
Zurück zum Zitat Strobl GR, Schneider MJ, Voigt-Martin IG (1980) Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic studies on low-density polyethylene. J Polym Sci B Polym Phys 18:1361–1381CrossRef Strobl GR, Schneider MJ, Voigt-Martin IG (1980) Model of partial crystallization and melting derived from small-angle X-ray scattering and electron microscopic studies on low-density polyethylene. J Polym Sci B Polym Phys 18:1361–1381CrossRef
48.
Zurück zum Zitat Strobl GR, Schneider MJ (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci B Polym Phys 18:1343–1359CrossRef Strobl GR, Schneider MJ (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci B Polym Phys 18:1343–1359CrossRef
49.
Zurück zum Zitat Tong ZZ, Xu JT, Xia SJ, Fan ZQ (2013) Comparison of chain structure and morphology of an olefinic blocky copolymer and a Ziegler–Natta-based ethylene random copolymer. Polym Int 62:228–237CrossRef Tong ZZ, Xu JT, Xia SJ, Fan ZQ (2013) Comparison of chain structure and morphology of an olefinic blocky copolymer and a Ziegler–Natta-based ethylene random copolymer. Polym Int 62:228–237CrossRef
50.
Zurück zum Zitat Tong ZZ, Huang J, Zhou B, Xu JT, Fan ZQ (2013) Chain microstructure, crystallization, and morphology of olefinic blocky copolymers. Macromol Chem Phys 214:605–616CrossRef Tong ZZ, Huang J, Zhou B, Xu JT, Fan ZQ (2013) Chain microstructure, crystallization, and morphology of olefinic blocky copolymers. Macromol Chem Phys 214:605–616CrossRef
51.
Zurück zum Zitat Tong ZZ, Zhou B, Huang J, Xu JT, Fan ZQ (2014) Regulation of crystallization kinetics, morphology, and mechanical properties of olefinic blocky copolymers. Macromolecules 47:333–346CrossRef Tong ZZ, Zhou B, Huang J, Xu JT, Fan ZQ (2014) Regulation of crystallization kinetics, morphology, and mechanical properties of olefinic blocky copolymers. Macromolecules 47:333–346CrossRef
52.
Zurück zum Zitat Liu YM, Tong ZZ, Xu JT, Fu ZS, Fan ZQ (2014) A highly efficient beta-nucleating agent for impact-resistant polypropylene copolymer. J Appl Polym Sci 131:40753 Liu YM, Tong ZZ, Xu JT, Fu ZS, Fan ZQ (2014) A highly efficient beta-nucleating agent for impact-resistant polypropylene copolymer. J Appl Polym Sci 131:40753
Metadaten
Titel
Crystallization behavior and enhanced toughness of poly(ethylene terephthalate) composite with noncovalent modified graphene functionalized by pyrene-terminated molecules: a comparative study
verfasst von
Zaizai Tong
Wangqian Zhuo
Jie Zhou
Runsheng Huang
Guohua Jiang
Publikationsdatum
09.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1173-8

Weitere Artikel der Ausgabe 17/2017

Journal of Materials Science 17/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.