Skip to main content


Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.10.2016 | Methodologies and Application | Ausgabe 3/2018 Open Access

Soft Computing 3/2018

CS-PSO: chaotic particle swarm optimization algorithm for solving combinatorial optimization problems

Soft Computing > Ausgabe 3/2018
Xiaolong Xu, Hanzhong Rong, Marcello Trovati, Mark Liptrott, Nik Bessis
Wichtige Hinweise
Communicated by V. Loia.


Combinatorial optimization problems are typically NP-hard, due to their intrinsic complexity. In this paper, we propose a novel chaotic particle swarm optimization algorithm (CS-PSO), which combines the chaos search method with the particle swarm optimization algorithm (PSO) for solving combinatorial optimization problems. In particular, in the initialization phase, the priori knowledge of the combination optimization problem is used to optimize the initial particles. According to the properties of the combination optimization problem, suitable classification algorithms are implemented to group similar items into categories, thus reducing the number of combinations. This enables a more efficient enumeration of all combination schemes and optimize the overall approach. On the other hand, in the chaos perturbing phase, a brand-new set of rules is presented to perturb the velocities and positions of particles to satisfy the ideal global search capability and adaptability, effectively avoiding the premature convergence problem found frequently in traditional PSO algorithm. In the above two stages, we control the number of selected items in each category to ensure the diversity of the final combination scheme. The fitness function of CS-PSO introduces the concept of the personalized constraints and general constrains to get a personalized interface, which is used to solve a personalized combination optimization problem. As part of our evaluation, we define a personalized dietary recommendation system, called Friend, where CS-PSO is applied to address a healthy diet combination optimization problem. Based on Friend, we implemented a series of experiments to test the performance of CS-PSO. The experimental results show that, compared with the typical HLR-PSO, CS-PSO can recommend dietary schemes more efficiently, while obtaining the global optimum with fewer iterations, and have the better global ergodicity.

Unsere Produktempfehlungen

Springer Professional "Wirtschaft+Technik"


Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Basis-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf die Inhalte der Fachgebiete Business IT + Informatik und Management + Führung und damit auf über 30.000 Fachbücher und ca. 130 Fachzeitschriften.

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

Weitere Produktempfehlungen anzeigen
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2018

Soft Computing 3/2018 Zur Ausgabe

Premium Partner