Skip to main content

2024 | OriginalPaper | Buchkapitel

CSR U-Net: A Novel Approach for Enhanced Skin Cancer Lesion Image Segmentation

verfasst von : V. Chakkarapani, S. Poornapushpakala

Erschienen in: Advances in Data-Driven Computing and Intelligent Systems

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Early detection is very critical step in skin cancer diagnosis and treatment. This paper introduces a novel deep learning approach for skin cancer lesion image segmentation model, CSR U-Net: Channel–Spatial Regularized U-Net. The proposed model focuses on both channel attention and spatial attention with additional optimized regularization methods to prevent model overfitting. The paper discusses the implementation of U-Net, Attention U-Net, Residual U-Net models, and CSR U-Net and also compares the results. The segmentation task often has challenges due to variations in skin tones, quality of the image, variations in the lesion, noise, class imbalance, and boundary delineation. This research aims to create a better high performing model CSR U-Net that over comes the above-said challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat SM J, P M, Aravindan C, Appavu R (2023) Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools Appl 82(10):15763–15778 SM J, P M, Aravindan C, Appavu R (2023) Classification of skin cancer from dermoscopic images using deep neural network architectures. Multimedia Tools Appl 82(10):15763–15778
2.
Zurück zum Zitat Alenezi F, Armghan A, Polat K (2023) A novel multi-task learning network based on melanoma segmentation and classification with skin lesion images. Diagnostics 13(2):262CrossRef Alenezi F, Armghan A, Polat K (2023) A novel multi-task learning network based on melanoma segmentation and classification with skin lesion images. Diagnostics 13(2):262CrossRef
3.
Zurück zum Zitat Dimililer K, Sekeroglu B (2023) Skin lesion classification using CNN-based transfer learning model. Gazi Univ J Sci 36(2):660–673CrossRef Dimililer K, Sekeroglu B (2023) Skin lesion classification using CNN-based transfer learning model. Gazi Univ J Sci 36(2):660–673CrossRef
4.
Zurück zum Zitat Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multisource dermatoscopic images of common pigmented skin lesions. Scientific Data 5:180161CrossRef Tschandl P, Rosendahl C, Kittler H (2018) The HAM10000 dataset, a large collection of multisource dermatoscopic images of common pigmented skin lesions. Scientific Data 5:180161CrossRef
5.
Zurück zum Zitat Thaajwer MA, Ishanka UP (2020) Melanoma skin cancer detection using image processing and machine learning techniques. In: 2020 2nd international conference on advancements in computing (ICAC). IEEE, Malabe, pp 363–368 Thaajwer MA, Ishanka UP (2020) Melanoma skin cancer detection using image processing and machine learning techniques. In: 2020 2nd international conference on advancements in computing (ICAC). IEEE, Malabe, pp 363–368
6.
Zurück zum Zitat Thomas SM, Lefevre JG, Baxter G, Hamilton NA (2021) Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer. Med Image Anal 68:101915CrossRef Thomas SM, Lefevre JG, Baxter G, Hamilton NA (2021) Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer. Med Image Anal 68:101915CrossRef
7.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) MICCAI 2015, LNCS, vol 9351. Springer International Publishing, Cham, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) MICCAI 2015, LNCS, vol 9351. Springer International Publishing, Cham, pp 234–241
8.
Zurück zum Zitat Le PT, Tran DQ, Nguyen HQ (2022) Mobile antialiasing attention u-net for medical image segmentation. J Med Imaging Health Inform 12(2):1–9 Le PT, Tran DQ, Nguyen HQ (2022) Mobile antialiasing attention u-net for medical image segmentation. J Med Imaging Health Inform 12(2):1–9
9.
Zurück zum Zitat Lee MC, Wang SY, Pan CT, Chien MY, Li WM, Xu JH, Luo CH, Shiue YL (2023) Development of deep learning with RDA U-Net network for bladder cancer segmentation. Cancers 15(4):1343CrossRef Lee MC, Wang SY, Pan CT, Chien MY, Li WM, Xu JH, Luo CH, Shiue YL (2023) Development of deep learning with RDA U-Net network for bladder cancer segmentation. Cancers 15(4):1343CrossRef
10.
Zurück zum Zitat Ghodhbani G, Sahnoun M, Kallel F, Siarry P (2022) U-NET Architecture for automatic MS lesions segmentation using MR images. In: 2022 6th international conference on advanced technologies for signal and image processing (ATSIP). IEEE, Sfax, pp 1–5 Ghodhbani G, Sahnoun M, Kallel F, Siarry P (2022) U-NET Architecture for automatic MS lesions segmentation using MR images. In: 2022 6th international conference on advanced technologies for signal and image processing (ATSIP). IEEE, Sfax, pp 1–5
11.
Zurück zum Zitat Hong Z, Xi H, Hu W, Wang Q, Wang J, Luo L, Zhan X, Wang Y, Chen J, Chen L (2022) Multi-attentional u-net for medical image segmentation. In: 2022 2nd international symposium on artificial intelligence and its application on media (ISAIAM). IEEE, Xi'an, pp 135–139 Hong Z, Xi H, Hu W, Wang Q, Wang J, Luo L, Zhan X, Wang Y, Chen J, Chen L (2022) Multi-attentional u-net for medical image segmentation. In: 2022 2nd international symposium on artificial intelligence and its application on media (ISAIAM). IEEE, Xi'an, pp 135–139
12.
Zurück zum Zitat Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, aa K, Mishra N, Kittler H, Halpern A (2018) Skin lesion analysis toward melanoma detection. In: 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 168–172 Codella NC, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, aa K, Mishra N, Kittler H, Halpern A (2018) Skin lesion analysis toward melanoma detection. In: 15th international symposium on biomedical imaging (ISBI 2018). IEEE, pp 168–172
Metadaten
Titel
CSR U-Net: A Novel Approach for Enhanced Skin Cancer Lesion Image Segmentation
verfasst von
V. Chakkarapani
S. Poornapushpakala
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-9521-9_11